Пространственные и динамические модели. Статические и динамические модели

13.12.2022 Проблемы 

Определение. Под динамической системой понимается объект, находящийся в каждый момент времени tT в одном из возможных состояний Z и способный переходить во времени из одного состояния в другое под действием внешних и внутренних причин.

Динамическая система как математический объект содержит в своем описании следующие механизмы:

  • - описание изменения состояний под действием внутренних причин (без вмешательства внешней среды);
  • - описание приема входного сигнала и изменения состояния под действием этого сигнала (модель в виде функции перехода);
  • - описание формирования выходного сигнала или реакции динамической системы на внутренние и внешние причины изменения состояний (модель в виде функции выхода).

Аргументами входных и выходных сигналов системы могут служить время, пространственные координаты, а также некоторые переменные, используемые в преобразованиях Лапласа, Фурье и других.

В простейшем случае оператор системы преобразует векторную функцию Х(t) в векторную функцию Y(t). Модели подобного типа называются динамическими (временными).

Динамические модели делятся на стационарные, когда структура и свойства оператора W(t) не изменяются со временем, и на нестационарные.

Реакция стационарной системы на любой сигнал зависит только от интервала времени между моментом начала действия входного возмущения и данным моментом времени. Процесс преобразования входных сигналов не зависит от сдвига входных сигналов во времени.

Реакция нестационарной системы зависит как от текущего времени, так и от момента приложения входного сигнала. В этом случае при сдвиге входного сигнала во времени (без изменения его формы) выходные сигналы не только сдвигаются во времени, но и изменяют форму.

Динамические модели делятся на модели безынерционных и инерционных (модели с запаздыванием) систем.

Безынерционные модели соответствуют системам, в которых оператор W определяет зависимость выходных величин от входных в один и тот же момент времени - y=W(Х,t).

В инерционных системах значения выходных параметров зависят не только от настоящих, но и предыдущих значений переменных

Y=W(Z,хt,хt-1,…,хt-k).

Инерционные модели еще называют моделями с памятью. Оператор преобразований может содержать параметры, которые обычно неизвестны - Y=W(,Z,Х), где ={1,2,…,k} - вектор параметров.

Важнейшим признаком структуры оператора является линейность или нелинейность по отношению к входным сигналам.

Для линейных систем всегда справедлив принцип суперпозиции, который состоит в том, что линейной комбинации произвольных входных сигналов ставится в соответствие та же линейная комбинация сигналов на выходе системы

Математическую модель с использованием линейного оператора можно записать в виде Y=WХ.

Если условие (2.1) не выполняется, модель называется нелинейной.

Классифицируются динамические модели в соответствии с тем, какие математические операции используются в операторе. Можно выделить: алгебраические, функциональные (типа интеграла свертки), дифференциальные, конечно-разностные модели и др.

Одномерной моделью называется такая, у которой и входной сигнал, и отклик одновременно являются величинами скалярными.

В зависимости от размерности параметра модели подразделяются на одно- и многопараметрические. Классификация моделей может быть продолжена также в зависимости от видов входных и выходных сигналов.

ГЛАВА 1 АНАЛИЗ СУЩЕСТВУЮЩИХ МЕТОДОВ И СИСТЕМ ОБРАБОТКИ И РАСПОЗНАВАНИЯ ДИНАМИЧЕСКИХ ОБЪЕКТОВ ПО ПОСЛЕДОВАТЕЛЬНОСТЯМ ИЗОБРАЖЕНИЙ.

1.1 Изображение как носитель разнородной информации.

1.2 Классификация задач распознавания изображений.

1.3 Классификация методов оценки движения.

1.3.1 Анализ сопоставительных методов оценки движения.

1.3.2 Анализ градиентных методов оценки движения.

1.4 Классификация групп признаков.

1.5 Анализ методов сегментации движущихся объектов.

1.6 Методы интерпретации событий и определения жанра сцены.

1.7 Системы обработки и распознавания динамических объектов.

1.7.1 Коммерческие аппаратно-программные комплексы.

1.7.2 Экспериментально-исследовательские программные комплексы.

1.8 Постановка задачи пространственно-временной обработки последовательностей изображений.

1.9 Выводы по главе.

ГЛАВА 2 МОДЕЛИ ОБРАБОТКИ И РАСПОЗНАВАНИЯ СТАТИЧЕСКИХ И ДИНАМИЧЕСКИХ ОБРАЗОВ.

2.1 Модель обработки и распознавания статических образов.

2.2 Модель обработки и распознавания динамических образов.

2.3 Дескриптивная теория распознавания изображений.

2.4 Расширение дескриптивной теории распознавания изображений.

2.5 Обобщенные модели поиска целевых признаков при обработке и распознавании динамических объектов в сложных сценах.ИЗ

2.6 Выводы по главе.

ГЛАВА 3 НАХОЖДЕНИЕ И ОЦЕНКА ЛОКАЛЬНЫХ ПРИЗНАКОВ ДВИЖЕНИЯ5 ДИНАМИЧЕСКИХ РЕГИОНОВ.119

3.1 Условия и ограничения усовершенствованного метода обработки последовательностей изображений.

3.2 Оценка локальных признаков движения.

3.2.1 Стадия инициализации.

3.2.2 Оценка пространственно-временного объема данных.

3.2.3 Классификация динамических регионов.

3.3 Способы нахождения локальных движений регионов.

3.3.1 Нахождение и отслеживание особых точек сцены.

3.3.2 Оценка движения на основе 3D тензора потока.

3.4 Уточнение границ движущихся регионов.

3.5 Выводы по главе.

ГЛАВА 4 СЕГМЕНТАЦИЯ ДИНАМИЧЕСКИХ ОБЪЕКТОВ В СЛОЖНЫХ СЦЕНАХ.

4.1 Модель многоуровневого движения в сложных сценах.

4.2 Модели оценки движения на плоскости.

4.3 Исследование свойств группы Ли.

4.4 Изоморфизмы и гомоморфизмы группы.

4.5 Модель предыстории движения объектов в последовательностях изображений.

4.6 Сегментация сложной сцены на пространственные объекты.

4.6.1 Предсегментация.

4.6.2 Сегментация.

4.6.3 Пост-сегментация.

4.7 Отображение ЗБ движения точки на видеопоследовательностях.

4.8 Выводы по главе.

ГЛАВА 5 РАСПОЗНАВАНИЕ ДИНАМИЧЕСКИХ ОБЪЕКТОВ, АКТИВНЫХ ДЕЙСТВИЙ И СОБЫТИЙ СЛОЖНОЙ СЦЕНЫ.

5.1 Построение контекстной грамматики:.

5.1.1 Формирование деревьев грамматического разбора.

5.1.2 Синтаксический анализ последовательности изображений.

5.1.3 Синтаксический анализ сцены.

5.2 Построение видеографа сложной сцены.

5.3 Распознавание динамических образов.

5.4 Распознавание событий сцены.

5.4.1 Способ выявления активных действий.

5.4.2 Построение видеографа событий.

5.5 Распознавание событий и жанра сцены.

5.5.1 Распознавание событий сцены.

5.5.2 Распознавание жанра сцены.

5.6 Выводы по главе.

ГЛАВА 6 ПОСТРОЕНИЕ СИСТЕМ ОБРАБОТКИ И РАСПОЗНАВАНИЯ ПОСЛЕДОВАТЕЛЬНОСТЕЙ ИЗОБРАЖЕНИЙ И ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ.

6.1 Экспериментальный программный комплекс «ЗРОЕЯ».

6.2 Работа модулей экспериментальной системы «ЭРОЕИ.».

6.2.1 Модуль предварительной обработки.".

6.2.2 Модуль оценки движения.

6.2.3 Модуль сегментации.

6.2.4 Модуль распознавания объектов.

6.2.5 Модуль распознавания активных действий.

6.3 Результаты экспериментальных исследований.

6.4 Прикладной проект «Визуальная регистрация государственных номерных знаков автотранспортных средств при многопоточном движении».

6.5 Прикладной проект «Система идентификации моделей кор-пусов холодильников по изображениям».

6.6 Программная система «Алгоритмы обработки и сегментации ландшафтных изображений. Идентификация объектов».

6.7 Выводы по главе.

Рекомендованный список диссертаций

  • Реконструкция изображений на основе пространственно-временного анализа видеопоследовательностей 2011 год, кандидат технических наук Дамов, Михаил Витальевич

  • Компьютерный метод локализации лиц на изображениях в сложных условиях освещения 2011 год, кандидат технических наук Пахирка, Андрей Иванович

  • Метод пространственно-временной обработки несинхронизированных видеопоследовательностей в системах стереовидения 2013 год, кандидат технических наук Пьянков, Дмитрий Игоревич

  • Теория и методы морфологического анализа изображений 2008 год, доктор физико-математических наук Визильтер, Юрий Валентинович

  • Распознавание динамических жестов в системе компьютерного зрения на основе медиального представления формы изображений 2012 год, кандидат технических наук Куракин, Алексей Владимирович

Введение диссертации (часть автореферата) на тему «Модели и методы распознавания динамических образов на основе пространственно-временного анализа последовательностей изображений»

Существует класс задач, в которых особую важность приобретает информация^ структуре и движении объектов сложной сцены (видеонаблюдение в закрытых помещениях, в местах большого скопления людей, управление движением робототехнических комплексов, наблюдение за движением транспортных средств и т.д.). Последовательности изображений являются сложным информационным ресурсом, структурированным в пространстве и во времени и объединяющим исходную информацию в виде многомерных сигналов, форму ее представления в компьютере и физические модели динамических объектов, явлений, процессов. Новые технические возможности цифровой обработки изображений позволяют частично учитывать такую специфику изображений, используя одновременно достижения когнитивной теории человеческого восприятия зрительных образов.

Анализ пространственно-временного объема данных позволяет выявлять не только статические, но и динамические признаки объектов наблюдения. В этом случае задачу распознавания можно определить как классификацию совокупностей состояний или как классификацию траекторий, решение которой не может быть найдено классическими методами распознавания, т.к. временные переходы^ могут порождать,преобразования изображений, не описываемые известными аналитическими зависимостями; Также наряду с задачей распознавания динамических объектов возникают задачи распознавания активных действий и событий, например, для выявления несанкционированных действий в местах скопления людей или определении жанра сцены для индексации в мультимедийных базах данных. Если рассматривать задачу распознавания объектов и событий по последовательностям изображений в виде единого процесса, то наиболее целесообразным является иерархический подход с элементами параллельной обработки на каждом уровне.

Совершенствование технических средств сбора и воспроизведение информации в виде статических изображений (фотографий) и видеопоследовательностей требует дальнейшего развития методов и алгоритмов их обработки, анализа ситуаций и распознавания изображенных объектов. Начальная теоретическая постановка задачи распознавания изображений относится к 1960-1970 гг. и отражена в ряде работ известных авторов . Постановка задачи распознавания изображений может варьироваться от собственно задачи распознавания объектов, задач анализа сцен до задач понимания изображений и проблем машинного зрения. При этом системы принятия интеллектуальных решений, основанные на методах распознавания образов и изображений, используют входную информацию комплексного типа. К ней относятся как изображения, полученные в широком волновом диапазоне электромагнитного спектра (ультрафиолетовом, видимом, инфракрасном и др.), так и информация в виде звуковых образов и локационных данных. Несмотря на различную физическую природу, такую информацию можно представить в виде реальных изображений объектов и специфических изображений. Радиометрические данные - это плоские изображения сцены, представленные в перспективной или ортогональной проекции. Они формируются путем измерения интенсивности электромагнитных волн определенного спектрального диапазона, отраженных или излучаемых объектами сцены. Обычно используют фотометрические данные, измеренные в видимом спектральном диапазоне, - монохроматические (яркостные)* или цветные изображения: Локационные данные - это пространственные координаты наблюдаемых точек сцены. Если координаты измерены для всех точек сцены, то такой массив локационных данных можно назвать изображением глубины сцены. Существуют упрощенные модели изображений (например, модели аффинной проекции, представленные слабоперспективными, пара-перспективными, ортогональными и параллельными проекциями), в которых глубина сцены считается постоянной величиной, и локационное изображение сцены не несет полезной информации . Звуковая информация носит в данном случае вспомогательный событийный характер.

Наиболее оперативно измеряются фотометрические данные. Локационная информация, как правило, вычисляется по данным, получаемым от специальных устройств (например, лазерного дальномера, радиолокатора) или с использованием стереоскопического метода анализа яркостных изображений. Вследствие трудностей оперативного получения локационных данных (особенно для сцен с быстро изменяющейся формой визуальных объектов) преобладают задачи описания сцены по одному визуальному изображению, т.е. задачи монокулярного зрительного восприятия сцены. В общем случае полностью определить геометрию сцены по одному изображению невозможно. Только при определенных ограничениях для достаточно простых модельных сцен и наличии априорных сведений о пространственном расположении объектов удается построить полное трехмерное описание по одному изображению . Одним из способов выхода из данной ситуации является обработка и анализ видеопоследовательностей, полученных от одной или нескольких видеокамер, установленных неподвижно или перемещающихся в пространстве.

Таким образом, изображения являются основной формой представления информации о реальном мире, и требуется дальнейшее развитие методов преобразования и семантического анализа как отдельных изображений, так и видеопоследовательностей. Одним из важнейших направлений разработки таких интеллектуальных систем является автоматизация выбора методов описания и преобразования изображений с учетом их информационной природы и целей распознавания уже на начальных этапах обработки изображений.

Первые работы исследователей из США {Louisiana State University, Carnegie Mellon University, Pittsburgh), Швеции ("Computational Vision and Active Perception Laboratory {CVAP), Department of Numerical Analysis and Computer Science), Франции {INRIA), Великобритании (University of Leeds), ФРГ (University of Karlsruhe), Австрии {University of Queensland), Японии, Китая {School of Computer Science, Fudan University) по обработке последовательностей изображений и распознаванию динамических объектов были опубликованы в конце 1980-х гг. Позже аналогичные работы стали появляться и в России: в Москве (МГУ, МАИ (ГТУ), МФТИ, ГосНИИ АС), С.Петербурге (СПбГУ, ГУАП, ФГУП ГОИ, ЛОМО), Рязани (РГРТУ), Самаре (СГАУ), Воронеже (ВГУ), Ярославле (ЯрГУ), Кирове (ВГУ), Таганроге (ТТИ ЮФУ), Новосибирске (НГУ), Томске (ТГПУ), Иркутске (ИрГУ), Улан-Удэ (ВСГТУ) и др. городах. Следует отметить особый вклад таких выдающихся российских ученых, занимающихся в данной области, как академик РАН, д.т.н. Ю. И. Журавлев, член-корреспондент РАН, д.т.н. В. А. Сойфер, д.т.н. Н. Г. Загоруйко, д.т.н. Л. М. Местецкий, д.т.н. Б. А. Алпатов и др. На сегодняшний день достигнуты значительные успехи при построении систем видеонаблюдения, систем аутентификации личности по изображениям и т.д. Однако существуют нерешенные проблемы при распознавании динамических образов из-за сложности и многообразия поведения объектов реального мира. Таким образом, данное направление нуждается в совершенствовании моделей, методов и алгоритмов распознавания динамических объектов и событий по последовательностям изображений в различных диапазонах электромагнитного излучения, что позволит разрабатывать системы видеоиаблю-дения на качественно новом уровне.

Целью диссертационной работы является повышение эффективности распознавания динамических объектов, их активных действий и событий в сложных сценах по последовательностям изображений для систем наружного и внутреннего видеонаблюдения.

Поставленная цель определила необходимость решения следующих задач:

Провести анализ методов оценки движения и нахождения признаков движения объектов по набору последовательных изображений, методов сегментации динамических объектов и семантического анализа сложных сцен, а также подходов к построению систем распознавания и слежения за динамическими объектами различного целевого назначения.

Разработать модели распознавания статических и динамических образов, основываясь на иерархической процедуре обработки временных рядов, в частности, последовательностей изображений.

Разработать метод оценки движения динамических структур по пространственно-временной информации, полученной в различных диапазонах электромагнитного излучения, позволяющий выбирать методы сегментации в зависимости от характера движения и, тем самым, выполнять адаптивное распознавание динамических образов.

Создать модель многоуровневого движения динамических структур в сложной сцене, позволяющую на основе полученных одометрических данных строить траектории движения динамических структур и выдвигать гипотезы о существовании визуальных объектов на основе анализа предыстории движений.

Разработать комплексный алгоритм сегментации, учитывающий совокупность выявленных признаков динамических структур при произвольных направлениях перемещений и перекрытий проекций объектов, основываясь на модели многоуровневого движения в сложных сценах.

Разработать метод распознавания динамических образов, представленных в терминах формальной грамматики и видеографа сцены, на основе метода коллективного принятия решений, а также методы распознавания активных действий и событий в сложной сцене, использующие графы активных действий и событий (расширяющие видеограф сложной сцены), и байесовскую сеть.

На основе разработанных методов и моделей спроектировать экспериментальные системы различного назначения; предназначенные для обработки последовательностей изображений объектов, характеризующихся фиксированным и произвольным набором 2£>-проекций, и-распознавания динамических образов в. сложных сценах.

Методы, исследований. При выполнении диссертационной работы использовались методы теории распознавания образов, дескриптивной теории распознавания изображений, теории обработки сигналов, методы векторного анализа и тензорного исчисления, а также теория групп, теория формальных грамматик.

Научная новизна диссертационной работы состоит в следующем:

1. Построена новая модель преобразования динамических изображений, отличающаяся расширенными иерархическими уровнями сегментации (по локальным и глобальным векторам движения) и распознавания (объектов и их активных действий), позволяющая находить целевые признаки для статических сцен с движущимися объектами и динамических сцен на, основе понятия максимального динамического инварианта.

2. Расширена дескриптивная теория распознавания изображений введением четырех новых принципов: учет цели распознавания на начальных стадиях анализа, распознавание поведения динамических объектов, оценка предыстории, переменное количество объектов наблюдения, что позволяет повысить качество распознавания движущихся объектов за счет повышения информативности исходных данных.

3. Впервые разработан адаптивный пространственно-временной метод оценки движения в синхронных последовательностях видимого и инфракрасного диапазонов электромагнитного излучения, позволяющий извлекать признаки движения на различных иерархических уровнях, сочетая достоинства обоих типов последовательностей изображений.

4. Разработана новая модель многоуровневого движения; позволяющая проводить декомпозицию сцены на отдельные уровни; не > ограничивающаяся; общепринятым разделением на передний план и фон, что позволяет выполнять более достоверную сегментацию изображений объектов в; сложных перспективных сценах.

5: Обоснован? и построен; новый; обобщенный алгоритм сегментации динамических объектов; с, применением, множества признаков^ включающих предыстории поведения; и позволяющий отслеживать как динамику отдельных визуальных объектов, так и взаимодействия объектов в сцене (перекрытия проекций; появление/исчезновение объектов из поля зрения видеодатчика) на основе групповых преобразований; и впервые предложенном анализе общей части проекций объекта (из двух соседних кадров) с применением интегральных и инвариантных оценок.

6. Модифицирован метод коллективного принятия решений, отличающийся нахождением признаков межкадровых проекций объекта и позволяющий учитывать предысторию наблюдений для распознавания активных действий и событий на основе байесовской сети, а также предложены четыре вида псевдо-расстояний для нахождения меры сходства v динамических образов с эталонными динамическими образами в зависимости от представления динамических признаков.

Практическая значимость. Предложенные в диссертационной работе методы и алгоритмы предназначены для практического применения при"мониторинге автотранспортных средств при многополосном движении в рамках государственного проекта «Безопасный город», в системах автоматизированного контроля за различными технологическими производственными процессами по видеопоследовательностям, в системах наружного видеонаблюдения и видеонаблюдения в закрытых помещениях, а также в системах иденл тификации объектов на аэрофотоснимках и распознавании ландшафтных изображений. На основе диссертационных исследований разработаны программные комплексы обработки и распознавания динамических объектов, применяемые в различных сферах деятельности.

Реализация результатов работы. Разработанные программы зареги- стрированы в Российском реестре программ для ЭВМ: программа «Сегментация изображений рукописного текста (SegPic)» (свидетельство №2008614243, г. Москва, 5 сентября 2008 г.); программа «Определение движения (MotionEstimation)» (свидетельство №2009611014, г. Москва, 16 февраля- 2009 г.); программа «Локализация лица (FaceDetection)» (свидетельство №2009611010, г. Москва, 16 февраля-2009 г.); программа «Система наложения визуальных природных эффектов на статическое изображение (Natural effects imitation)» (свидетельство №2009612794, г. Москва, 30 июля 2009 г.); программа «Визуальное детектирование дыма (SmokeDetection)» (свидетельство №2009612795, г. Москва, 30 июля 2009 г.); «Программа визуальной регистрации государственных номерных знаков автотранспортных средств при многопоточном движении (FNX CTRAnalyzer)» (свидетельство №2010612795, г. Москва, 23 марта 2010 г.), программа «Нелинейное улучшение изображений (Nonlinear image enhancement)» (свидетельство №2010610658, г. Москва, 31 марта 2010 г.

Получены акты о передаче и использовании алгоритмического и программного обеспечения для распознавания корпусов холодильников на сборочной линии (ОАО КЗХ «Бирюса», г. Красноярск), для идентификации изо бражений объектов на ландшафтных изображениях (Концерн радиостроения «Вега», ОАО КБ «Луч», г. Рыбинск Ярославской области), для сегментации лесной растительности по набору последовательных аэрофотоснимков (ООО «Альтекс Геоматика», г. Москва), для обнаружения пластин государственных регистрационных знаков автотранспортных средств в видеопоследовательностях при многопоточном движении и повышении качества их отображения^ (УГИБДД ГУВД по Красноярскому краю, г. Красноярск).

Разработанные алгоритмы и программное обеспечение используются в учебном процессе при проведении занятий по дисциплинам «Интеллектуальная обработка данных», «Компьютерные технологии в науке и образовании», «Теоретические основы цифровой обработки изображений», «Распознавание образов», «Нейронные сети», «Алгоритмы обработки изображений», «Алгоритмы обработки видеопоследовательностей», «Анализ сцен и машинное зрение» в Сибирском государственном аэрокосмическом университете имени академика М.Ф. Решетнева (СибГАУ).

Достоверность полученных в диссертационной работе результатов обеспечивается корректностью используемых методов исследования^ математической строгостью выполненных преобразований, а также соответствием сформулированных положений- и выводов результатам их экспериментальной проверки.

Основные положения, выносимые на защиту:

1. Модель обработки и распознавания динамических образов в сложных сценах, существенно расширенная" иерархическими уровнями сегментации и распознавания не только объектов, но и их активных действий.

2. Расширение дескриптивной теории распознавания изображений для временных рядов (последовательностей изображений) за счет повышения информативности анализируемых данных не только в пространственной области, но и по временной составляющей.

3. Адаптивный пространственно-временной метод оценки движения на. основе тензорных представлений локальных ЗИ объемов в синхронных последовательностях видимого и инфракрасного диапазонов электромагнитного излучения.

4. Модель многоуровневого движения в сложных сценах, расширяющая декомпозицию перспективных сцен на отдельные уровни для более достоверного анализа траекторий движения объектов.

5. Обобщенный алгоритм сегментации динамических объектов, позволяющий на основе групповых преобразований и предложенных интегральных и инвариантных оценок выявлять перекрытия проекций объектов, появление/исчезновение объектов из поля зрения видеодатчика.

6. Методы распознавания динамических образов на основе модифицированного метода коллективного принятия решений и нахождения псевдорасстояний в метрических пространствах, а также активных действий и событий в сложных сценах.

Апробация работы. Основные положения и результаты диссертационных исследований докладывались и обсуждались на 10 международной конференции «Pattern Recognition and Image Analysis: Modern Information Technologies», (S.-Petersburg, 2010), международном конгрессе «Ultra Modern Telecommunications and Control Systems ICUMT2010» (Moscow, 2010); XII международном симпозиума по непараметрическим методам в кибернетике и системному анализу (Красноярск, 2010), II международном симпозиуме «Intelligent Decision-Technologies - IDT 2010» (Baltimore, 2010), III международной конференции. «Automation, Control? and Information Technology - AOIT- ICT"2010» (Novosibirsk, 2010), 10-й, 11-й и 12-й международных конференциях и выставках «Цифровая обработка сигналов и ее применение» (Москва, 2008 - 2010 гг.), X международной научно-технической конференции «Теоретические и прикладные вопросы современных информационных технологий» (Улан-Удэ, 2009 г.), IX международной научно-технической конференции «Кибернетика и высокие технологии XXI века» (Воронеж, 2008), всероссийской конференции «Модели и методы обработки изображений» (Красноярск, 2007 г.), на X, XI и XIII международных научных конференциях «Ре-шетневские чтения» (Красноярск, 2006, 2007, 2009 гг.), а также на научных семинарах Государственного университета аэрокосмического приборостроения (С.-Петербург, 2009 г.), Института вычислительного моделирования СО

РАН (Красноярск, 2009 г.), Института систем обработки изображений РАН (Самара, 2010).

Публикации. По результатам диссертационного исследования опубликовано 53 печатных работы, из них 1 монография, 26 статей (из них 14 статей - в изданиях, включенных в список ВАК, 2 статьи - в изданиях, перечисленных в «Thomson Reuters: Science Citation Index Expanded / Conference Proceedings Citation Index»), 19 тезисов докладов, 7 свидетельств, зарегистрированных в Российском реестре программ для ЭВМ, а также 3 отчета по НИР.

Личный вклад. Все основные результаты, изложенные в диссертации, включая постановку задач и их математические и алгоритмические решения, получены автором лично, или выполнены под его научным руководством и при непосредственном участии. По материалам работы были защищены две диссертации на соискание ученой степени кандидата технических наук, при выполнении которых автор был официальным научным руководителем.

Структура работы. Работа состоит из введения, шести глав, заключения, библиографического списка. Основной текст диссертации содержит 326 страниц, изложение иллюстрируется 63 рисунками и 23 таблицами. Библиографический список включает 232 наименования.

Похожие диссертационные работы по специальности «Теоретические основы информатики», 05.13.17 шифр ВАК

  • Комбинированные алгоритмы оперативного выделения движущихся объектов в последовательности видеокадров на основе локального дифференциального метода вычисления оптического потока 2010 год, кандидат технических наук Казаков, Борис Борисович

  • Методы стабилизации видеопоследовательностей сложных статических и динамических сцен в системах видеонаблюдения 2014 год, кандидат технических наук Буряченко, Владимир Викторович

  • Метод и система обработки динамических медицинских изображений 2012 год, кандидат технических наук Марьяскин, Евгений Леонидович

  • Всеракурсное распознавание радиолокационных изображений наземных (надводных) объектов с сегментацией пространства признаков на зоны квазиинвариантности 2006 год, кандидат технических наук Матвеев, Алексей Михайлович

  • Методы и алгоритмы обнаружения наложенных текстовых символов в системах распознавания изображений со сложной фоновой структурой 2007 год, кандидат технических наук Зотин, Александр Геннадьевич

Заключение диссертации по теме «Теоретические основы информатики», Фаворская, Маргарита Николаевна

6.7 Выводы по главе

В" данной главе подробно рассмотрена структура и основные функции экспериментального программного комплекса «ЗРОЕЛ», у.1.02, который; выполняет системную иерархическую обработку последовательностей изображений вплоть до высших уровней распознавания объектов и событий. Он является автоматизированной системой, требующей участия человека для обучения и настройки графов, сетей и классификаторов. Ряд низкоуровневых модулей системы работает в автоматическом режиме. Структура программного комплекса такова, что возможна модификация модулей без оказания влияния на другие модули системы. Представлены функциональные схемы основных модулей системы: модуля, предварительной обработки, модуля оценки движения, модуля сегментации, модуля распознавания объектов и модуля распознавания активных действий.

Экспериментальные исследования на основе данного программного комплекса проводились на нескольких видеопоследовательностях и инфракрасных последовательностях из тестовой базы «OTCBVS^07», на тестовых видеопоследовательностях «Hamburg taxi», «Rubik cube». «Silent», а также на собственном видеоматериале. Тестировались пять методов оценки движения. Экспериментально было показано, что метод сопоставления блоков и предложенный метод для инфракрасной последовательности показывают близкие значения и являются наименее точными. Предложенный метод для видеопоследовательности и метод слежения за точечными особенностями демонстрируют близкие результаты. При этом разработанный тензорный подход требует меньшего объема компьютерных вычислений по сравнению с методом слежения за точечными особенностями. Совместное использование синхронизированных видеопоследовательности и инфракрасной последовательности целесообразно использовать для нахождения модуля вектора скорости и в условиях пониженного освещения сцены.

Для распознавании визуальных объектов применялись четыре вида псевдо-расстояний (псевдо-расстояния Хаусдорффа, Громова-Хаусдорффа, Фреше, естественное псевдо-расстояние) для нахождения меры сходства входных динамических образов с эталонными динамическими образами (в зависимости от представления динамического признака - множества числовых характеристик, множества векторов, множества функций). Они показали свою состоятельность для образов с допустимыми морфологическими преобразованиями. Использовались интегрированные нормализованные оценки формы контура Кс общей части проекции объекта между условно соседними кадрами и площадь общей части 5е и инвариантная оценка - корреляционная функция общих частей проекций Fcor. Применение модифицированного метода коллективного принятия решений позволяет «отбросить» неудачные наблюдения входных образов (случаи перекрытия проекций объектов, искажения сцены от источников освещения и т. д.) и выбрать наиболее подходящие наблюдения. Эксперименты показали, что применение модифицированного метода коллективного принятия решения повышает точность распознавания в среднем на 2,4-2,9 %.

Экспериментальные результаты оценки движения, сегментации и распознавания объектов были получены на тестовых последовательностях изображений («Hamburg taxi», «Rubik cube». «Silent», видеопоследовательности и инфракрасные последовательности из тестовой базы «ОТСВVS"07»). Для распознавания активных действий людей использовались примеры из тестовых баз «PETS», «CAVIAR», «VACE». Характер тестовой визуальной последовательности влияет на показатели. Хуже распознаются объекты, осуществляющие вращательное движение («Rubik cube»), лучше - техногенные объекты небольших размеров («Hamburg taxi», «Видео 1»). Наилучшие результаты показывает распознавание по двум последовательностям. Также лучшие экспериментальные результаты достигались при распознавании периодических активных действий людей, не находящихся в группах (хождение, бег, поднятие рук). Ложные срабатывания обусловлены засветкойш наличием теней, в ряде мест сцены.

В ^завершении* шестой главы были рассмотрены такие прикладные"проекты, как «Визуальная регистрация государственных номерных знаков автотранспортных средств при многопоточном движении», «Система идентификации моделей корпусов холодильников по изображениям», «Алгоритмы.обработки и-сегментации, ландшафтных изображений. Идентификация объектов». Алгоритмическое и. программное обеспечение передано заинтересованным, организациям: Результаты тестовой эксплуатации показали работоспособность программного обеспечения, разработанного на основе предложенных в диссертационной работе моделей и методов.

ЗАКЛЮЧЕНИЕ

В диссертационной работе была поставлена и решена важная научно-техническая проблема обработки пространственно-временных данных, полученных из последовательностей видимого и инфракрасного диапазонов электромагнитного излучения, и распознавания динамических образов в сложных сценах. Система иерархических методов обработки и извлечения признаков из пространственно-временных данных представляет собой методологическую основу решения прикладных задач в области видеонаблюдения.

Во введении обоснована актуальность диссертационной работы, сформулирована цель и поставлены задачи исследования, показана научная новизна и практическая ценность выполненных исследований, представлены основные положения, выносимые на защиту.

В первой главе показано, что визуальные объекты в видеопоследовательностях характеризуются более многомерным вектором признаков, чем" образы в классической постановке задачи распознавания статических изображений. В диссертационной работе вводятся уточняющие этапы на среднем и высшем уровнях обработки, которые имеют существенное значение для динамических изображений.

Построена классификация основных типов задач распознавания для статических изображений, статических сцен с элементами движения и последовательностей изображений, которая отражает исторический характер развития математических методов в данной области. Проведен подробный анализ методов оценки движения, алгоритмов сегментации движущихся объектов, методов интерпретации событий в сложных сценах.

Рассмотрены существующие коммерческие аппаратно-программные комплексы в таких областях, как мониторинг транспортных средств различного назначения, обработка спортивных видеоматериалов, обеспечение безопасности (распознавание лиц, несанкционированное проникновения людей на охраняемую территорию), Также анализируются исследовательские разработки для систем видеонаблюдения.

В завершении главы 1 приведена постановка задачи пространственно-временной обработки последовательностей изображений, представленная в виде трех уровней и пяти этапов обработки и распознавания визуальной информации по последовательностям изображений.

Во второй главе диссертации разработаны формальные модели обработки и распознавания объектов по их статическим изображениям и последовательностям изображений. Построены допустимые отображения в пространстве изображений и пространстве признаков для прямой задачи и обратной задачи. Приведены правила построения инвариантных решающих функций и обобщенного максимального динамического инварианта. При распознавании траектории различных образов в многомерном пространстве признаков могут пересекаться. При пересечении проекций объектов нахождение обобщенного максимального динамического инварианта становится еще более трудной, а в некоторых случаях и невозможной задачей.

Рассмотрены основные принципы дескриптивной теории распознавания изображений, в основу которой легли регулярные методы выбора и синтеза алгоритмических процедур обработки информации при распознавании изображений. Предложены дополнительные принципы, расширяющие дескриптивную теорию для динамических изображений: учет цели распознавания на начальных стадиях обработки последовательности изображений, распознавание поведенческих ситуаций динамических объектов, оценка предыстории динамических объектов, переменное количество объектов наблюдения в сложных сценах.

Подробно рассмотрена проблема поиска целевых признаков для анализа последовательностей изображений в зависимости от типа съемки (в случае одноракурсной съемки), движения видеодатчика и наличия движущихся объектов в зоне видимости. Приведены описания четырех ситуаций в пространстве признаков по мере усложнения задачи.

В третьей главе сформулированы этапы обработки последовательностей изображений и распознавания объектов, активных действий, событий и жанра сцены. Этапы отражают последовательный иерархический характер обработки визуальной информации. Также представлены условия и ограничения иерархических методов пространственно-временной обработки последовательностей изображений.

Классификация динамических регионов изображения производится путем анализа собственных значений 31) структурного тензора, собственные векторы которого определяются по локальным смещениям интенсивностей изображений соседних кадров и используются для оценки локальных ориен-таций динамических регионов. Обоснован новый метод оценки движения в пространственно-временном объеме данных видимого и инфракрасного диапазонов излучения на основе тензорного подхода. Рассмотрена возможность применения пространственно изменяемого ядра, адаптивного к размерам и ориентации окружения точки. Адаптация окружения, вначале имеющего форму круга, а затем превращающегося после 2-3 итераций в форму ориентированного эллипса позволяет улучшить оценку ориентированных структур на изображении. Такая стратегия улучшает оценки градиентов в пространственно-временном наборе данных.

Оценка локальных параметров движения производится путем вычисления геометрических примитивов и особенных точек локального региона. Таким образом, оценка локальных признаков движения регионов является основой выдвижения последующих гипотез принадлежности визуальных объектов к тому или иному классу. Использование синхронных видеопоследовательности и инфракрасной последовательности позволяет улучшить результаты сегментации движущихся регионов на изображении и нахождения локальных векторов движения.

Показано, что оценить границы в цветных изображениях можно на основе многомерных градиентных методов, построенных по всем направлениям в каждой точке границы, векторными методами с использованием порядковых статистиках о цветном изображении, а также применением тензорного подхода в рамках многомерных градиентных методов. Способы уточнения контурной информации имеют существенное значение для регионов с произвольным количеством допустимых проекций.

В четвертой главе построена многоуровневая модель движения на основе структур движения, отражающая динамику объектов реальных сцен и расширяющая двухуровневое представление сцены, разделяемой на объекты интереса и неподвижный фон.

Исследуются модели движения объектов на плоскости, основанные на теории компактных групп Ли. Представлены модели для проективного преобразования и разновидностей моделей аффинного преобразования. Такие преобразования хорошо описывают структуры движения с ограниченным количеством проекций (техногенные объекты). Представление структур с неограниченным количеством проекций (антропогенные объекты) аффинными или проективными преобразованиями сопровождается рядом дополнительных условий (в частности, требование удаленности объектов от видеодатчика, малоразмерные объекты и т. д.). Приводятся определения и теорема, доказанная Л. С. Понтрягиным, на основании которых удалось найти внутренний автоморфизм групповых координат, описывающих некоторый объект с точностью до сдвигов между соседними кадрами. Величина сдвигов опреде1 ляется по методу оценки движения межкадровой разницы, разработанному в 3" главе.

Построено расширение допустимых переходов между группами преобразований в- силу двойственности природы 2£)-изображений (отображение изменений проекции отдельного объекта и визуальное пересечение нескольких объектов: (взаимодействие объектов)). Найдены, критерии, которые при изменении групп преобразований фиксируют активные действия и события, в сцене, а именно, интегрированные оценки формы контура Кс общей части проекции между условно соседними кадрами и площадь общей части 5е и инвариантные оценки - корреляционная функция общих частей проекций Рсог и структурные константы группы Ли с"д, которые позволяют оценить степень изменчивости и выявить характер движения наблюдаемых объектов.

Также построена модель предыстории движения объектов в последовательностях изображений, включающая временные ряды траекторий перемещения, изменения формы объекта при его движении в 3£>-пространстве, а также изменения формы объекта, связанные с взаимодействием объектов в сцене и появлением/исчезновением объекта из поля зрения датчика (используется для распознавания активных действий и событий в сцене). 1

Разработан обобщенный алгоритм сегментации объектов в сложных сценах, учитывающий сложные случаи сегментации (перекрытия изображений, появление и исчезновение объектов из поля зрения камеры, движение на камеру), который включает три подэтапа: предсегментацию, сегментацию и пост-сегментацию. Для каждого подэтапа сформулированы задачи, исходные и выходные данные, разработаны блок-схемы алгоритмов, позволяющие проводить сегментацию сложных сцен, используя преимущества синхронных последовательностей из различных диапазонов излучения.

В пятой главе рассматривается процесс распознавания динамических образов, использующий формальную грамматику, видеограф сцены и модифицированный метод коллективного принятия решений. Динамическая сцена с многоуровневым движением обладает изменяющейся во времени структурой, поэтому целесообразно использовать структурные методы распознавания. Предложенная трехуровневая контекстная грамматика распознавания сложных сцен с многоуровневым движением объектов реализует две задачи: задачу синтаксического анализа последовательности изображений и задачу синтаксического анализа сцены.

Более наглядным средством семантического описания сцены является видеограф, построенный по методу иерархического группирования. На основе комплексных признаков низшего уровня формируются локальные пространственные структуры, устойчивые во времени, локальные пространственные объекты и строится видеограф сцены, включающий распознанные пространственные объекты, совокупность присущих им действий, а также пространственно-временные связи между ними.

Модифицированный метод коллективного принятия решений основан на двухуровневой процедуре распознавания. На первом уровне осуществляется распознавание принадлежности изображения той или иной области компетентности. На втором уровне вступает в силу решающее правило, компетентность которого максимальна в заданной области. Построены выражения для псевдо-расстояний при нахождении меры сходства входных динамических образов с эталонными динамическими образами в зависимости от представления динамических признаков - множества числовых характеристик, множества векторов, множества функций.

При распознавании событий видеограф сложной сцены расширяется до видеографа событий: Построена объектно-зависимая модель динамического объекта. В качестве функции соответствия используются простейшие классификаторы в пространстве признаков (например, по методу ^-средних), т. к. сопоставление осуществляется по ограниченному множеству шаблонов, ассоциированных с ранее опознанным объектом. Рассмотрены способы формирования шаблонов проекций визуальных объектов.

Видеограф событий строится на основе сетей Маркова. Рассмотрены способы выявления активных действий агентов, а также порядок построения и разрезания видеографа событий для распознавания, событий в сцене. При этом для каждого события строится своя модель, которая обучается на тестовых примерах. Обнаружение событий сводится к кластеризации последовательно выполняемых активных действий на основе байесовского подхода. Выполняется рекурсивное разрезание- матрицы весовых коэффициентов во входной видеопоследовательности и сравнение с эталонными, событиями, полученными на этапе обучения. Данная информация является* исходной для определения жанра сцены и при необходимости индексирования видеопоследовательности в базе данных. Разработана схема понимания и интерпретации изображений и видеоматериалов для индексирования в мультимедийных Интернет-базах.

В шестой главе представлено описание экспериментального программного комплекса «SPOER», v.l.02 по обработке последовательностей изображений и распознаванию движущихся объектов и событий. Он выполняет системную иерархическую обработку последовательностей изображений вплоть до высших уровней распознавания объектов и событий. Он является автоматизированной системой, требующей участия человека для обучения и настройки графов, сетей и классификаторов. Ряд низкоуровневых модулей системы работает в автоматическом режиме.

В экспериментальных исследованиях, проведенных с помощью программного комплекса «SPOER», v.l.02, использовались видеопоследовательности и инфракрасные последовательности изображений из тестовой базы «OTCBVS"07», тестовые видеопоследовательности «Hamburg taxi», «Rubik cube». «Silent» и собственные видеоматериалы. Тестировались пять методов оценки движения. Предложенный метод для видеопоследовательности демонстрирует наиболее точные результаты и требует меньшего объема компьютерных вычислений по сравнению с другими методами. Совместное использование синхронизированных видеопоследовательности и инфракрасной последовательности целесообразно при нахождении модулей векторов скоростей в условиях пониженного освещения сцены.

Для распознавании визуальных объектов с допустимыми морфологическими преобразованиями проекций использовались интегрированные нормализованные оценки формы контура Кс общей части проекции объекта между условно соседними кадрами и площадь общей части 5е и инвариантная оценка - корреляционная функция общих частей проекций Fcor. Применение модифицированного метода коллективного принятия решений позволяет «отбросить» неудачные наблюдения входных образов (случаи перекрытия проекций объектов, визуальные искажения сцены от источников освещения и т. д.) и выбрать наиболее подходящие наблюдения. Эксперименты показали, что применение модифицированного метода коллективного принятия решения повышает точность распознавания в среднем на 2,4-2,9 %.

Экспериментальные результаты оценки- движения; сегментации и распознавания объектов были получены на тестовых последовательностях изображений («Hamburg taxi», «Rubik cube». «Silent», видеопоследовательности и инфракрасные последовательности из тестовой базы «OTCBVS*07»). Для распознавания активных действий людей использовались примеры из тестовых баз «PETS», «CAVIAR», «VACE». Наилучшие результаты показывает распознавание по двум последовательностям. Также лучшие экспериментальные результаты достигались при распознавании периодических активных действий людей, не находящихся в группах (хождение, бег, поднятие рук). Ложные срабатывания обусловлены засветкой и наличием теней в ряде мест сцены.

На базе экспериментального комплекса «ЗРОЕЯ», V. 1.02 были разработаны системы обработки видеоинформации различного целевого назначения: «Визуальная регистрация государственных номерных знаков автотранспортных средств при многопоточном движении», «Система идентификации моделей корпусов холодильников по изображениям», «Алгоритмы обработки и сегментации ландшафтных изображений. Идентификация объектов». Алгоритмическое и программное обеспечение передано заинтересованным организациям. Результаты тестовой эксплуатации показали работоспособность программного обеспечения, разработанного на основе предложенных в диссертационной работе моделей и методов.

Таким образом, в диссертационной работе были получены следующие результаты:

1. Построены формальные модели обработки и распознавания пространственно-временных структур на основе адаптивной иерархической процедуры. обработки последовательностей изображений, отличающиеся тем, что в них учтены изоморфные и гомоморфные преобразования и выведены обобщенные функции статических и динамических инвариантов. Также построены модели поиска статических и динамических признаков объектов для четырех задач анализа последовательностей изображений в зависимости от наличия движущегося1 видеодатчика и движущихся объектов в сцене.

2. Расширены- основные положения дескриптивного подхода к распознаванию последовательностей изображений, позволяющие учитывать цели распознавания на начальных стадиях обработки последовательности изображений с последующей сегментацией областей интереса, строить траектории движения и распознавать поведение динамических объектов, учитывать предысторию движения объектов при пересечении их проекций, сопровождать переменное количество объектов наблюдения.

3. Разработан иерархический метод обработки и распознавания пространственно-временных структур, состоящий из трех уровней и пяти этапов и предполагающий нормализацию проекций объектов, что позволяет сократить количество эталонов для одного класса при распознавании сложных динамических объектов.

4. Разработан метод оценки движения для последовательностей изображений из видимого и инфракрасного диапазонов электромагнитного излучения отличающийся тем, что используются пространственно-временные наборы данных, представленные в виде 3£> структурных тензоров и ЪВ тензоров. потока соответственно. Полученная оценка движения позволяет выбрать наиболее эффективный метод сегментации динамических визуальных объектов, отличающихся количеством допустимых проекций.

5. Построена модель многоуровневого движения регионов изображения на основе локальных векторов скорости, отличающаяся тем, что позволяет разделять сцену не только на объекты переднего плана и фон, но и на уровни движения объектов, удаленных от наблюдателя. Это особенно актуально для сложных сцен, регистрируемых подвижным видеодатчиком, когда все объекты сцены находятся в относительном движении.

6. Разработан адаптивный алгоритм-сегментации динамических объектов: а) для объектов с ограниченным количеством проекций, на основе анализа предыстории движения локальных динамических регионов, отличающийся тем, что при перекрытиях изображений достраивается форма, региона по текущему шаблону и при условии применения фильтра Калмана прогнозируется,текущая, траектория; б) для объектов с произвольным количеством проекций на основе комплексного анализа, цветовых, текстурных, статистических, топологических признаков и признаков движения, отличающийся тем, что при перекрытиях изображений^форма региона достраивается с использованием метода активных контуров.

7. Предложен способ построения динамического видеографа сложной сцены по методу иерархического группирования комплексных признаков низшего уровня в локальные пространственные структуры, устойчивые во времени, и далее в локальные пространственные объекты. Сформированный видеограф устанавливает временные отношения между объектами и сохраняет все обобщенные признаки для распознавания событий в сцене. Расширена двумерная грамматика М.И. Шлезингера в рамках структурного метода распознавания до трехуровневой контекстной грамматики.

8: Для распознавания динамических объектов модифицирован коллективный метод принятия решений, вначале осуществляющий распознавание принадлежности изображения области компетентности, а затем выбирающий то решающее правило, компетентность которого максимальна в заданной области. Построены четыре вида псевдо-расстояний для нахождения меры сходства входных динамических образов с эталонами в зависимости от представления динамических признаков.

9. Разработан метод распознавания событий на основе байесовской сети, выполняющий рекурсивное разрезание матрицы весовых коэффициентов во входной видеопоследовательности и сравнение с эталонными событиями, полученными на этапе обучения. Данная информация является исходной для определения жанра сцены и индексирования видеопоследовательностей в мультимедийных Интернет-базах.

10. Практические задачи обработки и распознавания последовательностей изображений решены с помощью адаптивно-иерархического метода пространственно-временной обработки, показана работоспособность метода, продемонстрирована эффективность применения системы иерархических методов обработки и. распознавания визуальной информации с возможностью адаптивного выбора признаков в. процессе решения задачи. Полученные результаты в виде спроектированных экспериментальных систем, переданы заинтересованным организациям.

Таким образом, в данной диссертационной, работе решена важная научно-техническая проблема информационного обеспечения систем видеонаблюдения и разработано новое направление в области пространственно-временной обработки и распознавания динамических изображений.

Список литературы диссертационного исследования доктор технических наук Фаворская, Маргарита Николаевна, 2011 год

1. Автоматический анализ сложных изображений / Под ред. Э.М. Бра-вермана. М.: Мир, 1969. - 309 с. Бонгард М.М. Проблемы узнавания. - М.: Наука, 1967.-320 с.

2. Алпатов, Б.А., Обнаружение движущегося объекта в последовательности изображений при наличии ограничений на площадь и скорость движения объекта / Б.А. Алпатов, A.A. Китаев // Цифровая обработка изображений, №1, 2007. с. 11-16.

3. Алпатов, Б.А., Выделение движущихся объектов в условиях геометрических искажений изображения / Б.А. Алпатов, П.В. Бабаян // Цифровая обработка сигналов, № 45 2004. с. 9-14.

4. Алпатов, Б.А., Бабаян П.В. Методы обработки и анализа изображений" в бортовых системах обнаружения и сопровождения объектов / Б.А. Алпатов, П.В. Бабаян // Цифровая обработка сигналов, №2, 2006. 45-51 с.

5. Большаков, A.A., Методы обработки многомерных данных и временных рядов: Учебное пособие для вузов / A.A. Большаков, Р.И. Каримов / М.: Горячая линия-Телеком, 2007. 522 с.6: Бонгард, М.М. Проблемы узнавания / М.М. Бонгард / М.: Наука, 1967.-320 с.

6. Булинский, A.B. Теория случайных процессов1 / A.B. Булинский, А.Н. Ширяев / М.: ФИЗМАТЛИТ, 2005. 408 с.

7. Вайнцвайг, М.Н. Архитектура системы представления зрительных динамических сцен в терминах понятий / М.Н.Вайнцвайг, М.Н. Полякова // Сб. тр. 11-й всеросс. конф. «Математические методы распознавания образов (ММРО-11)», М., 2003. с.261-263.

8. Вапник, В.Н. Задача обучения распознаванию образов / В.Н. Вапник / М.: Знание, 1970. - 384 с.

9. П.Вапник, В.Н. Теория распознавания образов (статистические проблемы обучения) / В.Н. Вапник, А.Я. Червоненкис / М.: Наука, 1974. 416 с.

10. Васильев, В.И. Распознавание движущихся тел / В.И. Васильев, А.Г. Ивахненко, В.Е. Реуцкий и др. // Автоматика, 1967, № 6, с. 47-52.

11. Васильев, В.И. Распознающие системы / В.И. Васильев / Киев: Наук. Думка, 1969. 292 с.

12. Васильев, В.И. Распознающие системы. Справочник / В.И. Васильев / Киев, Наук, думка, 1983. 422 с.

13. Визильтер, Ю.В. Применение метода анализа морфологических свидетельств в задачах машинного зрения>/ Ю.В. Визильтер // Вестник компьютерных и информационных технологий, № 9, 2007 с. 11-18.

14. Визильтер, Ю.В. Проективные морфологии на базе интерполяции / Ю.В. Визильтер // Вестник компьютерных и информационных технологий, №4, 2008.-с. 11-18.

15. Визильтер, Ю.В., Проективные морфологии и их применение в структурном анализе цифровых изображений / Ю.В. Визильтер, С.Ю. Желтов // Изв. РАН. ТиСУ, № 6, 2008. с. 113-128.

16. Визильтер, Ю.В. Исследование поведения авторегрессионных фильтров в задаче выделения и анализа движения на цифровых видеопоследовательностях / Ю.В. Визильтер, Б.В. Вишняков // Вестник компьютерных и информационных технологий, № 8, 2008. - с. 2-8.

17. Визильтер, Ю.В. Проективные морфологии изображений на базе моделей, описываемых структурирующими функционалами /Ю.В. Визильтер, С.Ю. Желтов // Вестник компьютерных и информационных технологий, № 11, 2009.-с. 12-21.

18. Вишняков, Б.В. Использование модифицированного метода оптических потоков в задаче обнаружения и межкадрового прослеживания движуs.

19. Ганебных, С.Н. Анализ сцен на основе применения древовидных представлений изображений / С.Н.Ганебных, М.М. Ланге // Сб. тр. 11-й все-росс. конф. «Математические методы распознавания образов (ММРО-11)», М., 2003.-с. 271-275.

20. Глушков, В.М. Введение в кибернетику / В.М. Глушков / Киев: изд-во АН УССР, 1964. 324 с.

21. Гонсалес, Р., Вудс Р. Цифровая обработка изображений. Пер.с англ. под ред. П.А.Чочиа / Р.Гонсалес, Р. Вудс / М.: Техносфера, 2006. 1072 с.

22. Горошкин, А.Н., Сегментация изображений рукописного текста (SegPic) / А.Н. Горошкин, М.Н. Фаворская // Свидетельство № 2008614243. Зарегистрировано в Реестре программ для ЭВМ г. Москва, 5 сентября 2008 г.

23. Гренандер, У. Лекции по теории образов / У. Гренандер / В 3 т. / Пер.с англ. Под ред. Ю.И.Журавлева. М.: Мир, 1979-1983. 130 с.

24. Грузман, И.С. Цифровая обработка изображений в информационных системах: Учебн. Пособие / И.С.Грузман, B.C. Киричук, В.П. Косых, Г.И.Перетягин, A.A. Спектор / Новосибирск, изд-во НГТУ, 2003. с. 352.

25. Достоверный и правдоподобный вывод в интеллектуальных системах / Под ред. В.Н. Вагина, Д.А. Поспелова. 2-е изд., испр. и доп. - М.: ФИЗМАТЛИТ, 2008. - 712 с.

26. Дуда, Р. Распознавание образов и анализ сцен / Р. Дуда, П. Харт / М.: изд-во «Мир», 1978. 512 с.

27. Журавлев, Ю.И. Об алгебраическом подходе к решению задач распознавания и классификации / Ю.И. Журавлев // Проблемы кибернетики: Сб. ст., вып. 33, М.: Наука, 1978. с. 5-68.

28. Журавлев, Ю.И. Об алгебраической коррекции процедур обработки (преобразования) информации / Ю.И.Журавлев, К.В. Рудаков // Проблемы прикладной математики и информатики, М.: Наука, 1987. с. 187-198.

29. Журавлев, Ю.И. Распознавание образов и распознавание изображений / Ю.И. Журавлев, И.Б. Гуревич // Ежегодник «Распознавание. Классификация. Прогноз. Математические методы и их применение», вып. 2, М.: Наука, 1989.-72 с.

30. Журавлев, Ю.И. Распознавание образов и анализ изображений / Ю.И.Журавлев, И.Б. Гуревич / Искусственный интеллект в 3-х кн. Кн. 2. Модели и методы: Справочник / Под ред. Д.А. Поспелова, М.: изд-во «Радио и связь», 1990. - с.149-190.

31. Загоруйко, Н.Г. Методы распознавания и их применение / Н.Г. За-горуйко / М.: Сов. радио, 1972. 206 с.

32. Загоруйко, Н.Г. Искусственный интеллект и эмпирическое предсказание / Н.Г. Загоруйко / Новосибирск: изд. НГУ, 1975. 82 с.

33. Ивахненко, А.Г. О применении теории инвариантности и комбинированного управления к синтезу и анализу обучающихся систем / А.Г. Ивахненко // Автоматика, 1961, № 5, с. 11-19.

34. Ивахненко, Г.И. Самообучающиеся системы распознавания и автоматического управления / А.Г. Ивахненко / Киев: Техника, 1969. 302 с.

35. Кашкин, В.Б. Дистанционное зондирование Земли из космоса. Цифровая обработка изображений: Учебное пособие / В.Б. Кашкин, А.И. Су-хинин / М.: Логос, 2001. 264 с.

36. Кобзарь, А.И. Прикладная математическая статистика. Для инженеров и научных работников / А.И. Кобзарь / М.: ФИЗМАТЛИТ, 2006. 816 с.

37. Ковалевский, В.А. Корреляционный метод распознавания изображений / В.А. Ковалевский // Журн. вычисл. математики и мат.физики, 1962, 2, № 4, с. 684-690.

38. Колмогоров, А.Н: Эпсилон-энтропия и эпсилон-емкость множеств в функциональных пространствах / А.Н. Колмогоров, В.М. Тихомиров // Теория информации и теория алгоритмов. М.: Наука, 1987. с. 119-198.

39. Корн, Г. Справочник по математике для научных работников и инженеров / Г.Корн, Т. Корн // М.: Наука, Гл. ред. физ.-мат. лит., 1984. 832 с.

40. Кроновер, Р. Фракталы и хаос в динамических системах / Р. Кроно-вер // М.: Техносфера, 2006. 488 с.

41. Лапко, A.B. Непараметрические*и гибридные системы классификации разнотипных данных / А.В.Лапко, BlA. Лапко // Тр. 12-й всеросс. конф. «Математические методы и модели распознавания образов» (ММРО-12), М., 2005.-с. 159-162.

42. Левтин, К.Э. Визуальное детектирование дыма (SmokeDetection) / К.Э.Левтин, М.Н. Фаворская // Свидетельство № 2009612795. Зарегистрировано в Реестре программ для ЭВМ г. Москва, ЗО июля 2009 г.

43. Луцив, В.Р. Принципы унификации оптических систем роботов / В.Р. Луцив, М.Н. Фаворская // В- кн. «Унификация и стандартизация промышленных роботов», Ташкент, 1984. с. 93-94.

44. Луцив, В.Р. Универсальная оптическая система для ГАП / В.Р. Луцив, М.Н. Фаворская // В кн. «Опыт создания, внедрения и использования АСУТП в объединениях и на предприятиях», Л., ЛДНТП, 1984. с. 44-47.

45. Медведева, Е.В. Метод оценки векторов движения в видеоизображениях / Е.В.Медведева, Б.О. Тимофеев // В материалах 12-й международной конференции и выставки «Цифровая обработка сигналов и ее применение», М.: В 2 т. Т. 2, 2010. с. 158-161.

46. Методы компьютерной обработки изображений / Под ред. В.А.Сойфера. 2-е изд., исп. - М.: ФИЗМАТЛИТ, 2003. - 784 с.

47. Методы автоматического обнаружения и сопровождения объектов. Обработка изображений и управление / Б. А. Алпатов, П.В. Бабаян, O.E. Балашов, А.И. Степашкин. -М.: Радиотехника, 2008. - 176 с.

48. Методы компьютерной оптики / Под ред. В.А.Сойфера. М.: ФИЗМАТЛИТ, 2003. - 688 с.

49. Мудров, А.Е. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль / А.Е. Мудров / Томск: МП «РАСКО», 1991. 272 с.

50. Пахирка, А.И. Локализация лица (FaceDetection) / А.И.Пахирка, М.Н. Фаворская // Свидетельство № 2009611010. Зарегистрировано в Реестре программ для ЭВМ г. Москва, 16 февраля 2009 г.

51. Пахирка, А.И. Нелинейное улучшение изображений (Nonlinear image enhancement) / А.И.Пахирка, М.Н. Фаворская // Свидетельство № 2010610658. Зарегистрировано в Реестре программ для ЭВМ г. Москва, 31 марта 2010 г.

52. Понтрягин, Л. С. Непрерывные группы J Л. С. Понтрягин // 4-е изд., М.: Наука, 1984.-520 с.

53. Потапов, A.A. Фракталы в радиофизике и радиолокации: Топология выборки / A.A. Потапов // Изд. 2-е, перераб. и доп. - М.: Университетская книга, 2005. 848 с.

54. Радченко, Ю.С. Исследование спектрального алгоритма обнаружения" изменений в видеопоследовательности / Ю.С.Радченко, А.В.Булыгин, Т.А. Радченко // Изв. ВУЗОВ. Радиоэлектроника, ;№ 7, 2009. с. 49-59.

55. Сальников, И.И. Растровые пространственно-временные сигналы в системах анализа изображений / И.И. Сальников // М.: ФИЗМАТЛИТ, 2009. -248 с.

56. Сергунин, С.Ю. Схема динамического построения многоуровнего описания изображений / С.Ю.Сергунин, К.М.Квашнин, М.И. Кумсков // Сб. тр. 11-й всеросс. конф: «Математические методы распознавания образов (ММРО-11)», М., 2003. с. 436-439:

57. Слынько, Ю.В. Решение задачи одновременного сопровождения и оконтуривания методом максимального правдоподобия / Ю.В. Слынько // Цифровая обработка сигналов, № 4, 2008. с. 7-10

58. Солсо, Р. Когнитивная психология / Р. Солсо / СПб.: Питер, 6-е изд., 2006. 590 с.

59. Тарасов, И.Е. Разработка цифровых устройств на основе ПЛИС «Xi-linx»c применением языка VHDL / И.Е. Тарасов / М.: Горячая линия-Телеком, 2005. - 252 с.

60. Фаворская, М.Н. Разработка алгоритмов цифрового распознавания изображений в адаптивных робототехнических комплексах / М.Н*. Фаворская // Л!, Ленинградский ин-т авйац. приборостр., 1985. Рукопись деп: в ВИНИТИ 23.01.85. № 659-85 Деп.

61. Фаворская; М.Н. Применение спектральных методов для нормализации и распознавания изображений в адаптивных робототехнических комплексах / М.Н.*.Фаворская // Л., Ленинградский,ин-т авиац. приборостр., 1985. Рукопись деп. в ВИНИТИ23.01.85. № 660-85 Деп.

62. Фаворская, М.Н. Опыт разработки алгоритмов распознавания объектов для штамповочного производства / М.Н. Фаворская // В кн. «Состояние, опыт и направления работ по комплексной автоматизации на основе ГПС, РТК и ПР», Пенза, 1985. с. 64-66.

63. Фаворская, М.Н. Исследование проективных свойств групп объектов / М.Н. Фаворская, Ю.Б. Козлова // Вестник Сибирского государственного аэрокосмического университета. Вып. 3, Красноярск, 2002. - с. 99-105.

64. Фаворская, М.Н. Определение аффинной структуры объекта по движению / М.Н. Фаворская // Вестник Сибирского государственного аэрокосмического университета, Вып. 6, Красноярск, 2005. - с. 86-89.

65. Фаворская- М.Н. Общая классификация подходов к распознаванию изображений / М-.Н. Фаворская // В< материалах X междунар. научн. конф. «Решетневские чтения» СибГАУ, Красноярск, 2006. с. 54-55.

66. Фаворская М.Н. Инвариантные решающие функции в задачах распознавания статических изображений / М.Н. Фаворская // Вестник Сибирского государственного аэрокосмического университета. Вып. 1 (14), Красноярск, 2007. с. 65-70.

67. Фаворская, М.Н. Вероятностные методы сегментации видеопотока как задача с недостающими данными / М.Н. Фаворская // Вестник Сибирского государственного аэрокосмического университета. Вып. 3 (16), Красноярск, 2007. с. 4-8.

68. Фаворская, М.Н. Выбор целевых информативных признаков в системах распознавания изображений / М.Н. Фаворская // В материалах XI меж-дунар. научн. конф. «Решетневские чтения» СибГАУ, Красноярск, 2007 с. 306-307.

69. Фаворская, М.Н. Стратегии сегментации двумерных изображений / М.Н. Фаворская // В материалах всероссийской научной конференции «Модели и методы обработки изображений ММОИ-2007», Красноярск, 2007. с. 136-140.

70. Фаворская, М.Н. Сегментация ландшафтных изображений на основе фрактального подхода / М.Н. Фаворская // В материалах 10-й международной конференции и выставке «Цифровая обработка сигналов и ее применение», М., 2008. с. 498-501.

71. Фаворская, М.Н. Модель распознавания изображений рукописного текста / М.Н. Фаворская, А.Н. Горошкин // Вестник Сибирского государст4 i, венного аэрокосмического университета. Вып. 2" (19), Красноярск, 2008. с. 52-58.

72. Фаворская, М.Н. Алгоритмы реализации оценки движения в системах видеонаблюдения / М.Н. Фаворская, A.C. Шилов // Системы управленияи информационные технологии. Перспективные исследования / ИПУ РАН; ВГТУ, № 3.3(33), М.-Воронеж, 2008. с. 408^12.

73. Фаворская, М.Н. К вопросу об использовании формальных грамматик при распознавании объектов в сложных сценах // М.Н. Фаворская / В материалах XIII междунар.научн.конф. «Решетневские чтения». В 2 ч. 4.2, Красноярск, 2009. с. 540-541.

74. Фаворская, М.Н. Распознавание динамических образов на основе предсказывающих фильтров / М.Н. Фаворская // Вестник Сибирского государственного аэрокосмического университета. Вып. 1(22) в 2 ч. 4f. 1, Красноярск, 20091 с. 64-68.

75. Фаворская, М.Н., Методы, поиска движения в.видеопоследовательностях / М.Н. Фаворская, А.И. Пахирка, A.C. Шилов; М.В. Дамов // Вестник. Сибирского государственного аэрокосмического университета. Вып. 1 (22) в 2 ч. Ч. 2, Красноярск, 2009. с. 69-74.

76. Фаворская, М.Н. Нахождение движущихся видео объектов, с применением- локальных 3D структурных тензоров / М.Н. Фаворская // Вестник Сибирского государственного аэрокосмического университета. Вып. 2 (23), Красноярск, 2009. с. 141-146.

77. Фаворская, М.Н. Оценка движения объектов в сложных сценах на основе тензорного подхода / М.Н. Фаворская // Цифровая обработка сигналов, № 1,2010.-с. 2-9.

78. Фаворская, М.Н. Комплексный расчет характеристик ландшафтных изображений / М.Н. Фаворская, Н.Ю. Петухов // Оптический журнал, 77, 8, 2010.-с. 54-60.

79. Файн, B.C. Опознавание изображений / B.C. Файн // М.: Наука, 1970.-284 с.

80. Форсайт, Д.А. Компьютерное зрение. Современный подход / Д.А. Форсайт, Дж. Понс // М.: издательский дом «Вильяме», 2004. 928 с.

81. Фу, К. Последовательные методы в распознавании образов и обучение машин / К. Фу / М.: Наука, 1971. 320 с.

82. Фу, К. Структурные методы в распознавании образов / К. Фу / М.: Мир, 1977.-320 с.

83. Фукунага, К. Введение в статистическую теорию распознавания образов / К. Фукунага / М.: Наука, 1979. 368 с.

84. Шелухин, О.И. Самоподобие и фракталы. Телекоммуникационные приложения / О.И. Шелухин, А.В. Осин, С.М. Смольский / Под ред. О.И. Шелухина. М.: ФИЗМАТЛИТ, 2008. 368 с.

85. Шилов, А.С. Определение движения (MotionEstimation) / А.С. Шилов, М.Н. Фаворская // Свидетельство № 2009611014. Зарегистрировано в Реестре программ для ЭВМ г. Москва, 16 февраля 2009 г.

86. Ш.Шлезингер, М.И. Корреляционный метод распознавания последовательностей изображений / М.И. Шлезингер / В кн.: Читающие автоматы. Киев: Наук.думка, 1965. с. 62-70.

87. Шлезингер, М.И. Синтаксический анализ двумерных зрительных сигналов в условиях помех / М.И. Шлезингер // Кибернетика, № 4, 1976. - с.76-82.

88. Штарк, Г.-Г. Применение вейвлетов для ЦОС / Г.-Г. Штарк / Ml: Техносфера, 2007. 192 с.

89. Шуп, Т. Прикладные численные методы в физике и технике: Пер. с англ. / Т. Шуп / Под ред. С.П.Меркурьева; М.: Высш. Шк., 19901 - 255 с.11"5. Электр, ресурс: http:// www.cse.ohio-state.edu/otcbvs-bench

90. Электр, ресурс: http://www.textures.forrest.cz/ электронный ресурс (база текстурных изображений textures library forrest).

91. Электр, ресурс: http://www.ux.uis.no/~tranden/brodatz.html электронный ресурс (база текстурных изображений Brodatz).

92. Allili M.S., Ziou D. Active contours for video object tracking using region, boundary and shape information // SIViP, Vol. 1, no. 2, 2007. pp. 101-117.

93. Almeida J., Minetto R., Almeida T.A., Da S. Torres R., Leite N.J. Robust estimation of camera motion using optical flow models // Lecture Notes in

94. Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5875 LNCS (PART 1), 2009. pp. 435-446.

95. Ballan L., Bertini M., Bimbo A. D., Serra G. Video Event Classification using String Kernels // Multimed. Tools Appl., Vol. 48, no. 1, 2009. pp. 6987.

96. Ballan L. Bertini M. Del Bimbo A., Serra G. Action categorization in soccer videos using string kernels // In: Proc. of IEEE Int"l Workshop on Content-Based Multimedia Indexing (CBMI). Chania, Crete, 2009. pp. 13-18.

97. Barnard K., Fan Q. F., Swaminathan R., Hoogs A., Collins R, Rondot P., and Kaufhold J. Evaluation of localized semantics: Data, methodology, and experiments // International Journal of Computer Vision, IJCV 2008, Vol. 77, no. 1-3,2008.-pp. 199-217.

98. Bertini M., Del Bimbo A., Serra G. Learning rules for semantic video event annotation // Lecture Notes In Computer Science; In: Proc. of Int"l Conference on Visual Information Systems (VISUAL), Vol. 5188, 2008. pp. 192-203.

99. Bobick A.F., Davis J.W. The recognition of human-movement using temporal templates // IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, no. 3, 2001. pp. 257-267.

100. Boiman O., Irani M. Detecting irregularities in images and in video // International Journal of Computer Vision, Vol. 74, no. 1, 2007. pp. 17-31.

101. Bresson X., Vandergheynst P., Thiran J.-P. A Variational Model for Object Segmentation Using Boundary Information and Shape Prior Driven4 by the Mumford-Shah Functional // International Journal of Computer Vision, vol. 68, no. 2, 2006.-pp. 145-162.

102. Cavallaro A., Salvador E., Ebrahimi T. Shadow-aware object-based video processing // IEEE Vision; Image and Signal Processing, Vol. 152, no. 4, 2005.-pp. 14-22.

103. Chen J., Ye J. Training SVM with indefinite kernels // In: Proc. of the 25th international conference on Machine learning (ICML), Vol. 307, 2008. pp. 136-143.

104. Cheung S.-M., Moon Y.-S. Detection of Approaching Pedestrians from a Distance Using Temporal Intensity Patterns // MVA2009, Vol. 10, no. 5, 2009. -pp. 354-357.

105. Dalai N., Triggs B., and Schmid G. Human detection using oriented histograms of flow and appearance // In ECCV, vol. II, 2006. pp. 428^141.

106. Dalai N., Triggs B. Histograms of Oriented Gradients for Human Detection // IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. II, 2005-pp. 886-893.

107. Dani A.P., Dixon W.E. Single camera structure and motion estimation // Lecture Notes in Control and Information Sciences, 401, 2010. pp. 209-229.

108. Datta Ri, Joshi D;, Li J., and Wang J. Z1 Image retrieval: Ideas, influences, and trends of the new age // ACM"-Computing Surveys, Vol. 40:, no: 2, 2008. ■ -pp. 1-60.

109. Dikbas S., Arici T., Altunbasak Y. Fast motion estimation with interpolation-free sub-sample accuracy // IEEE Transactions on Circuits and Systems for Video Technology 20 (7), 2010. -pp. 1047-1051.

110. Dollar P., Rabaud V., Cottrell G., Belongie S. Behavior recognition via sparse spatio-temporal features // In: Proc. 2nd Joint IEEE International Workshop on Evaluation of Tracking and Surveillance, VS-PETS, 2005. pp. 65-72.

111. Donatini P. and Frosini P. Natural pseudodistances between closed surfaces // Journal of the European Mathematical Society, Vol. 9, no. 2, 2007 pp. 231-253.

112. Donatini P. and Frosini P. Natural pseudodistances between closed curves // Forum Mathematicum, Vol. 21, no. 6, 2009. pp. 981-999.

113. Ebadollahi S., L., X., Chang S.F., Smith J.R. Visual event detection using multi-dimensional concept dynamics // In: Proc. of IEEE Int"l Conference on Multimedia and Expo (ICME), 2006. pp. 239-248.

114. Favorskaya M., Zotin A., Danilin I., Smolentcheva S. Realistic 3D-modeling of Forest Growth with Natural Effect // Proceedings of the Second KES International Symposium IDT 2010, Baltimore. USA. Springer-Verlag, Berlin, Heidelberg. 2010.-pp. 191-199.

115. Francois A.R.J., Nevatia R., Hobbs J.R., Bolles R.C. VERL: An ontology framework for representing and annotating video events // IEEE Multimedia, Vol: 12; no. 4, 2005. pp. 76-86.

116. Gao J., Kosaka A:, Kak A.C. A Multi-Kalman Filtering Approach for Video Tracking of Human-Delineated Objects in Cluttered" Environments // IEEE Com-puter Vision and Image Understanding, 2005, V. 1, no. 1. pp. 1-57.

117. Gui L., Thiran J.-P., Paragios N. Joint Object Segmentation and Behavior Classification in Image Sequences // IEEE Conf. on Computer Vision and Pattern Recognition, 17-22 June 2007. pp. 1-8.

118. Haasdonk B. Feature space interpretation of SVMs with indefinite kernels // IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 27, no. 4, 2005. pp. 482-492.

119. Harris C. and Stephens M. A combined corner and edge detector // In Fourth Alvey Vision Conference, Manchester, UK, 1988. pp. 147-151.

120. Haubold A., Naphade M. Classification of video events using 4-dimensional- time-compressed motion features // In CIVR "07: Proceedings of the6th ACM international confcrcnce on Image and video retrieval, NY, USA, 2007. -pp. 178-185.

121. Haykin S. Neural Networks: A Comprehensive Introduction. / N.Y.: Prentice-Hall, 1999;.- 658 pi.

122. Hoynck M., Unger M., Wellhausen J. and Ohm J.-R. A Robust Approach to Global Motion Estimation for Content-based Video Analysis // Proceedings of SPIE Vol. 5601, Bellingham, WA, 2004. pp. 36-45.

123. Huang Q., Zhao D., Ma S., Gao W., Sun H. Deinterlacing using hierarchical motion analysis // IEEE Transactions on Circuits and Systems for Video Technology 20 (5), 2010. pp. 673-686.

124. Jackins C.L., Tanimoto S.L. Quad-trees, Oct-trees and K-trees: A Generalized Approach to Recursive Decomposition of Euclidean Space // IEEE Transactions onPAMI, Vol. 5, no. 5, 1983.-pp. 533-539.

125. Ke Y., Sukthankar R:, Hebert Mi. Efficient visual event detection using volumetric features // In: Proc. of Int"l Conference on Computer Vision (ICCV), vol.1, 2005.-pp. 166-173.

126. Klaser A., Marszalek M., and Schmid C.A Spatio-Temporal Descriptor Based on 3D-Gradients // In BMVC, British Machine Vision, Conference, 2008. -pp. 995-1004.

127. Kovashka, A., Grauman, К Learning a hierarchy of discriminative space-time neighborhood features for human action recognition // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition ,2010. pp.2046-2053 .

128. Kumskov M.I. Calculation Scheme of the Image Analysis Controlled by the Models of the Objects to be Recognized // Pattern Recognition and Image Analysis, Vol. 11, no. 2, 2001. p. 446-449:

129. Kwang-Kyu S. Content-based image retrieval by combining genetic algorithm and support vector machine // In ICANN (2), 2007. pp. 537-545.

130. Lai C.-L., Tsai S.-T., Hung Y.-P. A study on the three-dimensional coordinate calibration using fuzzy system // International Symposium on Computer, Communication, Control and Automation 1, 2010. - pp. 358-362.

131. Laptev I. On space-time interest points // International Journal of Computer Vision, Vol. 64, no. 23, 2005. pp. 107-123.

132. Leibe B., Seemann E., Schiele B. Pedestrian Detection in- Crowded* Scenes // IEEE Conference on Computer Vision and"Pattern Recognition, Vol. 1, 2005.-pp. 878- 885.

133. Lew M. S., Sebe N., Djeraba C., and Jain R. Content-based multimedia information1 retrieval: State of the art and challenges // ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 2, no. 1, 2006. pp. 1-19.

134. Li J. and Wang J. Z. Real-time computerized annotation of pictures // IEEE Trans. PAMI, Vol. 30, 2008. pp. 985-1002.

135. Li L., Luo R., Ma R., Huang W., and Leman K. Evaluation of An IVS System for Abandoned Object Detection on PETS 2006 Datasets // Proc. 9 IEEE Intern. Workshop on PETS, New York, 2006. pp. 91-98.

136. Li L., Socher R., and Fei-Fei L. Towards Total Scene Understanding: Classification, Annotation and Segmentation in an Automatic Framework // IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2009. pp. 2036-2043.

137. Li Q., Wang G., Zhang G.} Chen S. Accurate global motion estimation based on pyramid with mask // Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, Vol: 21, no. 6, 2009. pp. 758-762.

138. Lindeberg T., Akbarzadeh A. and Laptev I. Galilean-diagonalized spatio-temporal interest operators // Proceedings of the 17th International Conference on Pattern Recognition (ICPR"04), 2004. pp. 1051-1057.

139. Lim J., Barnes,N. Estimation of the epipole using optical flow at antipodal points // Computer Vision and Image Understanding 114, no. 2, 2010. pp. 245-253.

140. Lowe D. G. Distinctive Image Features from Scale-Invariant Keypoints // International Journal of Computer Vision, Vol. 60, no. 2, 2004. pp. 91-110.

141. Lucas B.D., Kanade T. An Iterative Image Registration Technique with an Application to Stereo Vision // International Joint Conference on Artificial Intelligence, 1981. pp. 674-679.

142. Mandelbrot B;B. The Fractal Geometry of Nature / N.Y.: Freeman^ 1982. 468 p.; русс, пер.: Мандельброт Б. Фрактальная, геометрия природы: Пер. с англ. / М.: Институт компьютерных исследований, 202. - 658 с.

143. Mandelbrot В.В., Frame M.L. Fractals, Graphics, and Mathematics Education/N. Y.: Springer-Verlag, 2002. 654 p.

144. Mandelbrot B.B. Fractals and Chaos: The Mandelbrot Set.and Beyond / N.Y.: Springer-Verlag, 2004. 308 p.

145. Memoli F. On the use of Gromov-Hausdorff distances for shape comparison // Proceedings of the Eurographics Symposium on Point-Based Graphics. Prague, Czech Republic, 2007. pp. 81-90.

146. Mercer J. Functions of positive and negative type and their connection with the theory of integral equations // Transactions of the London Philosophical Society (A), vol. 209, 1909. pp. 415-446.

147. Mikolajczyk K. Detection of local features invariant to affine transformations, Ph.D.thesis, Institut National Polytechnique de Grenoble, France. 2002.171 p.

148. Mikolajczyk K. and Schmid G. An Affine Invariant Interest Point Detector // Proceedings of ECCV. Vol. 1. 2002. pp. 128-142.

149. Minhas R., Baradarani A., Seifzadeh S., Jonathan Wu, Q.M. Human action recognition using extreme learning machine based on visual vocabularies // Neurocomputing, Vol. 73 (10-12), 2010. pp. 1906-1917.

150. Mladenic D., Skowron A., eds.: ECML. Vol. 4701 of Lecture Notes in Computer Science, Springer, 2007. pp. 164-175.

151. Moshe Y., Hel-Or H. Video block motion estimation based on gray-code kernels // IEEE Transactions on Image Processing 18 (10), 2009. pp. 22432254.

152. Nakada T., Kagami S;, Mizoguchi H. Pedestrian Detection using 3D Optical Flow Sequences for- afMobile Robot // IEEE Sensors, 2008. pp: 116-119:

153. Needleman, S.B:,. Wunsch C.D; A general method applicable to the search for similarities in the* amino acid sequence of two proteins // Journal"of Molecular Biology Vol. 48, no: 3, 1970. pp. 443-453.

154. Neuhaus M., Bunke H. Edit distance-based kernel functions-for structural pattern classification // Pattern Recognition. Vol. 39, no. 10, 2006. pp: 1852-1863.

155. Nevatia R., Hobbs J., and Bolles B. An ontology for video event representation // In Workshop on Event Detection and Recognition. IEEE, Vol.12, no. 4, 2004. pp. 76-86.

156. Nguyen.N.-T., Laurendeau D:, Branzan-Albu A. A robust method for camera motion estimation in movies based on optical flow // The 6th International

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

Информации

Особенности пространственно-временной

СВЯЗИ ПОКАЗАТЕЛЕЙ

МНОГОФАКТОРНЫЕ ДИНАМИЧЕСКИЕ МОДЕЛИ

Многофакторные динамические модели связи показателей строятся по пространственно-временным выборкам , которые представляют собой множество данных о значениях признаков совокупности объектов за ряд периодов (моментов) времени.

Пространственные выборки формируются путем объединения за ряд лет (периодов) пространственных выборок, т.е. совокупности объектов, относящихся к одинаковым периодам времени. Используются в случае небольших выборок, т.е. краткой предыстории развития объекта.

Динамические выборки образуются посредством объединения динамических рядов отдельных объектов в случае длительной предыстории , т.е. больших выборок.

Классификация способов формирования выборок условна, т.к. зависит от цели моделирования, от устойчивости выявленных закономерностей, от степени однородности объектов, от числа факторов. В большинстве случае преимущество отдается первому способу.

Динамические ряды с длительной предысторией рассматриваются как ряды, на основе которых можно строить модели взаимосвязи показателей различных объектов достаточно высокого качества.

Динамические модели связи показателей могут быть:

· пространственными, т.е. моделирующими связи показателей по всем объектам, рассматриваемым в определенный момент (интервал) времени;

· динамическими, которые строятся по совокупности реализаций одного объекта за все периоды (моменты) времени;

· пространственно-динамическими, которые формируются по всем объектам за все периоды (моменты) времени.

Модели динамики показателейгруппируют по следующим видам:

1) одномерныемодели динамики: характеризуются как модели некоторого показателя данного объекта;

2) многомерные модели динамики одного объекта: моделируют несколько показателей объекта;

3) многомерные модели динамики совокупности объектов: моделируют несколько показателей системы объектов.

Соответственно, модели связи используются для пространственной экстраполяции (для прогнозирования значений результативных показателей новых объектов по значениям факторных признаков), модели динамики – для динамической экстраполяции (для прогнозирования зависимых переменных).

Можно выделить основные задачи использования пространственно-временной информации.

1. В случае краткой предыстории: выявление пространственных связей между показателями, т.е. изучение структуры связей между объектами для повышения точности и надежности моделирования этих закономерностей.

2. В случае длительной предыстории: аппроксимация закономерностей изменения показателей в целях объяснения их поведения и прогнозирования возможных состояний.

Введение

динамический модель математический

Динамическая модель - теоретическая конструкция (модель), описывающая изменение (динамику) состояний объекта. Динамическая модель может включать в себя описание этапов или фаз или диаграмму состояний подсистем. Часто имеет математическое выражение и используется главным образом в общественных науках (например, в социологии), имеющих дело с динамическими системами, однако современная парадигма науки способствует тому, что данная модель также имеет широкое распространение во всех без исключения науках в т.ч. в естественных и технических.

Экономико-математические модели описывают экономику в развитии (в отличие от статических, характеризующих ее состояние в определенный момент). Существует два подхода к построению динамической модели:

оптимизационный (выбор оптимальной траектории экономического развития из множества возможных)

описательный, в центре которого понятие равновесной траектории (т. е. уравновешенного, сбалансированного роста).

Динамические межотраслевые модели, экономико-математические модели плановых расчётов, позволяющие определять по годам перспективного периода объёмы производства продукции, капитальных вложений (а также ввода в действие основных фондов и производственных мощностей) по отраслям материального производства в их взаимной связи. В динамических межотраслевых моделях на каждый год планового периода задаются объёмы и структура "чистого" конечного продукта (личного и общественного потребления, накопления оборотных фондов и государственных резервов, экспортно-импортного сальдо, капитальных вложений, не связанных с увеличением производства в рассматриваемом периоде), а также объём и структура основных фондов на начало периода. В динамических межотраслевых моделях, помимо коэффициента прямых затрат, присущих статическим межотраслевым моделям, вводят специальные коэффициенты, характеризующие материально-вещественную структуру капитальных вложений.

По типу используемого математического аппарата динамические межотраслевые модели делятся на балансовые и оптимальные. Балансовые динамические межотраслевые модели могут быть представлены как в форме системы линейных уравнений, так и в форме линейных дифференциальных или разностных уравнений. Балансовые динамические межотраслевые модели различают также по лагу (разрыв во времени между началом строительства и пуском в эксплуатацию построенного объекта). Для оптимальных динамических межотраслевых моделей характерны наличие определённого критерия оптимальности, замена системы линейных уравнений системой неравенств, введение специальных ограничений по трудовым и природным ресурсам.

Динамические физические и виртуальные объекты существуют объективно. Это значит, что эти объекты функционируют в соответствии с некоторыми законами, независимо от того, знает ли и понимает ли их человек или нет. Например, для управления автомобилем вовсе не обязательно знать, как работает двигатель, что в нем происходит и почему это приводит к движению автомобиля, если нажимать на газ или поворачивать руль. Но если человек предполагает не управлять автомобилем, а сконструировать систему управления им, то знание и понимание процессов динамики уже совершенно необходимо.

Динамические объекты и их линейные модели плотно исследовались и анализировались на протяжении более двух столетий многими учеными и инженерами. Результаты этих исследований и анализа и представляются ниже качественно в концентрированном виде, так, как это воспринимается автором. Прежде всего, это относится к линейным моделям динамических систем, их классификации, описанию их свойств и области состоятельности.

Кроме того, далее обсуждаются и некоторые свойства нелинейных систем. Слова, термины "динамический", "динамичный" прочно и широко вошли в различные области знаний человека, используются и в быту, как эмоциональный эпитет энергичного движения в широком смысле этого слова, синоним быстрых изменений. В предлагаемой работе термин "динамический" будет использован в его узком и непосредственном значении, означающем "силовой", т.е. динамический объект - это объект, подверженный внешнему воздействию, приводящему к движению в широком смысле этого слова.


1. Динамические модели: понятие, виды


Динамический объект - это физическое тело, техническое устройство или процесс, имеющее входы, точки возможного приложения внешних воздействий, и воспринимающие эти воздействия, и выходы, точки, значения физических величин в которых характеризуют состояние объекта. Объект способен реагировать на внешние воздействия изменением своего внутреннего состояния и выходных величин, характеризующих его состояние. Воздействие на объект, и его реакция в общем случае изменяются с течением времени, они наблюдаемы, т.е. могут быть измерены соответствующими приборами. Объект имеет внутреннюю структуру, состоящую из взаимодействующих динамических элементов.

Если вчитаться и вдуматься в приведенное выше нестрогое определение, можно увидеть, что отдельно динамический объект в "чистом" виде, как вещь в себе, не существует: для описания объекта модель должна содержать еще и 4 источника воздействий (генераторы):

среду и механизм подачи на него этих воздействий

объект должен иметь протяженность в пространств

функционировать во времени

в модели должны быть измерительные устройства.

Воздействием на объект может быть некоторая физическая величина: сила, температура, давление, электрическое напряжение и другие физические величины или совокупность нескольких величин, а реакцией, откликом объекта на воздействие, может быть движение в пространстве, например смещение или скорость, изменение температуры, силы тока и др.

Для линейных моделей динамических объектов справедлив принцип суперпозиции (наложения), т.е. реакция на совокупность воздействий равна сумме реакций на каждое из них, а масштабному изменению воздействия соответствует пропорциональное изменение реакции на него. Одно воздействие может быть приложено к нескольким объектам или нескольким элементам объекта.

Понятие динамический объект содержит и выражает причинно-следственную связь между воздействием на него и его реакцией. Например, между силой, приложенной к массивному телу, и его положением и движением, между электрическим напряжением, приложенным к элементу, и током, протекающим в нем.

В общем случае динамические объекты являются нелинейными, в том числе они могут обладать и дискретностью, например, изменять быстро структуру при достижении воздействием некоторого уровня. Но обычно большую часть времени функционирования динамические объекты непрерывны во времени и при малых сигналах они линейны. Поэтому ниже основное внимание будет уделено именно линейным непрерывным динамическим объектам.

Пример непрерывности: автомобиль, двигающийся по дороге - непрерывно функционирующий во времени объект, его положение зависит от времени непрерывно. Значительную часть времени автомобиль может рассматриваться как линейный объект, объект, функционирующий в линейном режиме. И только при авариях, столкновениях, когда, например, автомобиль разрушается, требуется описание его как нелинейного объекта.

Линейность и непрерывность во времени выходной величины объекта просто удобный частный, но важный случай, позволяющий достаточно просто рассмотреть значительное число свойств динамического объекта.

С другой стороны, если объект характеризуется процессами, протекающими в разных масштабах времени, то во многих случаях допустимо и полезно заменить наибыстрейшие процессы их дискретным во времени изменением.

Настоящая работа посвящена, прежде всего, линейным моделям динамических объектов при детерминированных воздействиях. Гладкие детерминированные воздействия произвольного вида могут быть генерированы путем дискретного, сравнительно редкого аддитивного действия на младшие производные воздействия дозированными дельта - функциями. Такие модели состоятельны при сравнительно малых воздействиях для весьма широкого класса реальных объектов. Например, именно так формируются сигналы управления в компьютерных играх, имитирующих управление автомобилем или самолетом с клавиатуры. Случайные воздействия пока остаются за рамками рассмотрения.

Состоятельность линейной модели динамического объекта определяется, в частности тем, что является ли его выходная величина достаточно гладкой, т.е. является ли она и несколько ее младших производных по времени непрерывными. Дело в том, что выходные величины реальных объектов изменяются достаточно плавно во времени. Например, самолет не может мгновенно переместиться из одной точки пространства в другую. Более того он, как и любое массивное тело, не может скачком изменить свою скорость, на это потребовалась бы бесконечная мощность. Но ускорение самолета или автомобиля может изменяться скачком.

Понятие динамический объект вовсе не всесторонне определяет физический объект. Например, описание автомобиля как динамического объекта позволяет ответить на вопросы, как быстро он разгоняется и тормозит, как плавно двигается по неровной дороге и кочкам, какие воздействия будут испытывать водитель и пассажиры машины при движении по дороге, на какую гору он может подняться и т.п. Но в такой модели безразлично, какой цвет у автомобиля, не важна его цена и др., постольку, они не влияют на разгон автомобиля. Модель должна отражать главные с точки зрения некоторого критерия или совокупности критериев свойства моделируемого объекта и пренебрегать второстепенными его свойствами. Иначе она будет чрезмерно сложной, что затруднит анализ интересующих исследователя свойств.

С дугой стороны, если исследователя интересует именно изменение во времени цвета автомобиля, вызываемое различными факторами, например солнечным светом или старением, то и для этого случая может быть составлено и решено соответствующее дифференциальное уравнение.

Реальные объекты, как и их элементы, которые также можно рассматривать как динамические объекты, не только воспринимают воздействия от некоторого источника, но и сами воздействуют на этот источник, противодействуют ему. Выходная величина объекта управления во многих случаях является входной для другого, последующего динамического объекта, которая также, в свою очередь, может влиять на режим работы объекта. Т.о. связи динамического объекта с внешним, по отношению к нему миром, двунаправленные.

Часто, при решении многих задач, рассматривается поведение динамического объекта только во времени, а его пространственные характеристики, в случаях, если они непосредственно не интересуют исследователя, не рассматриваются и не учитываются, за исключением упрощенного учета задержки сигнала, которая может быть обусловлена временем распространения воздействия в пространстве от источника к приемнику.

Динамические объекты описываются дифференциальными уравнениями (системой дифференциальных уравнений). Во многих практически важных случаях это линейное, обыкновенное дифференциальное уравнение (ОДУ) или система ОДУ. Многообразие видов динамических объектов определяет высокую значимость дифференциальных уравнений как универсального математического аппарата их описания, позволяющего проводить теоретические исследования (анализ) этих объектов и на основе такого анализа конструировать модели и строить полезные для людей системы, приборы и устройства, объяснять устройство окружающего нас мира, по крайней мере, в масштабах макромира (не микро- и не мега-).

Модель динамического объекта состоятельна, если она адекватна, соответствует реальному динамическому объекту. Это соответствие ограничивается некоторой пространственно-временной областью и диапазоном воздействий.

Модель динамического объекта реализуема, если можно построить реальный объект, поведение которого под влиянием воздействий в некоторой пространственно-временной области и при некотором классе и диапазоне входных воздействий соответствует поведению модели.

Широта классов, многообразие структур динамических объектов может вызвать предположение, что все они вместе обладают неисчислимым набором свойств. Однако попытка охватить и понять эти свойства, и принципы работы динамических объектов, во всем их многообразии вовсе не столь безнадежна.

Дело в том, что если динамические объекты адекватно описываются дифференциальными уравнениями, а это именно так, то совокупность свойств, характеризующих динамический объект любого рода, определяется совокупностью свойств характеризующих его дифференциальное уравнение. Можно утверждать что, по крайней мере, для линейных объектов таких основных свойств существует довольно ограниченное и сравнительно небольшое число, а поэтому ограничен и набор основных свойств динамических объектов. Опираясь на эти свойства и комбинируя элементы, обладающие ими, можно построить динамические объекты с самыми разнообразными характеристиками.

Итак, основные свойства динамических объектов выведены теоретически из их дифференциальных уравнений и соотнесены с поведением соответствующих реальных объектов.

Динамический объект - это объект, воспринимающий изменяющиеся во времени внешние воздействия и реагирующий на них изменением выходной величины. Объект имеет внутреннюю структуру, состоящую из взаимодействующих динамических элементов. Иерархия объектов ограничена снизу простейшими моделями и опирается на их свойства.

Воздействием на объект, как и его реакцией, являются физические, измеряемые величины, это может быть и совокупность физических величин, математически описываемая векторами.

При описании динамических объектов с помощью дифференциальных уравнений неявно предполагается, что каждый элемент динамического объекта получает и расходует столько энергии (такую мощность), сколько ему требуется для нормальной работы в соответствии с его назначением по отклику на поступающие воздействия. Часть этой энергии объект может получать от входного воздействия и это описывается дифференциальным уравнением явно, другая часть может поступать от сторонних источников и в дифференциальном уравнении не фигурировать. Такой подход существенно упрощает анализ модели, не искажая свойств элементов и всего объекта. При необходимости процесс обмена энергией с внешней средой может быть подробно описан в явной форме и это будут также дифференциальные и алгебраические уравнения.

В некоторых частных случаях источником всей энергии (мощности) для выходного сигнала объекта является входное воздействие: рычаг, разгон массивного тела силой, пассивная электрическая цепь и др.

В общем случае воздействие может рассматриваться как управляющее потоками энергии для получения необходимой мощности выходного сигнала: усилитель синусоидального сигнала, просто идеальный усилитель и др.

Динамические объекты, как и их элементы, которые также можно рассматривать как динамические объекты, не только воспринимают воздействие от его источника, но и сами воздействуют на этот источник: например в классической механике это выражается принципом, сформулированном в третьем законе Ньютона: действие равно противодействию, в электротехнике напряжение источника есть результат установления динамического равновесия между источником и нагрузкой. Т.о. связи динамического объекта с внешним, по отношению к нему миром, двунаправленные.

По существу, все элементы динамического объекта являются двунаправленными, как и сам объект по отношению к внешним объектам. Это следует из обобщения третьего закона Ньютона, сформулированного им для механики: сила противодействия тела равна силе воздействия на него другим телом и направлена навстречу ей, а в химии также формулируется в виде принципа Ле Шателье. Обобщая можно сказать: воздействие одного динамического элемента на другой встречает противодействие некоторого вида. Например, электрическая нагрузка источника напряжения противодействует ему током, изменяя значение напряжения на выходе источника. В общем случае противодействие нагрузки влияет на режим работы источника, и их поведение определяется в результате, если это возможно, переходом в некоторое динамическое равновесие.

Во многих случаях мощность источника воздействия значительно больше потребной входной мощности приемника, каковым является динамический объект. В этом случае динамический объект практически не влияет на режим работы источника (генератора) и связь может рассматриваться как однонаправленная от источника к объекту. Такая однонаправленная модель элемента, основывающаяся на рациональном физическом структурировании объекта, существенно упрощает описание и анализ системы. Собственно, многие технические объекты, хотя и далеко не все же, строятся как раз по такому принципу, в частности при проектировании систем для решения задач управления. В других случаях, например при решении задачи, когда требуется получение максимального кпд двигателя, противодействием пренебречь нельзя.

Детализируя структуру динамического объекта можно придти к элементарным, условно не упрощаемым объектам. Такие объекты описываются простейшими алгебраическими и дифференциальными уравнениями. Фактически такие элементы в свою очередь могут иметь сложную структуру, однако удобнее при моделировании воспринимать их как единое целое, свойства которого определяются этими, сравнительно простыми уравнениями, связывающими реакцию с воздействием.


1.1 Физические модели


Так называют увеличенное или уменьшенное описание объекта или системы. Отличительная характеристика физической модели состоит в том, что в некотором смысле она выглядит как моделируемая целостность.

Наиболее известным примером физической модели является копия конструируемого самолета, выполненная с полным соблюдением пропорций, скажем 1:50. На одном из этапов разработки самолета новой конструкции возникает необходимость проверить его основные аэродинамические параметры. С этой целью подготовленную копию продувают в специальной (аэродинамической) трубе, а полученные показания затем тщательно исследуют. Выгодность такого подхода совершенно очевидна. И потому все ведущие самолетостроительные компании используют физические модели подобного рода при разработке каждого нового летательного аппарата.

Часто в аэродинамическую трубу помещают уменьшенные копии многоэтажных зданий, имитируя при этом розу ветров, характерную для той местности, где предполагается их строительство. Пользуются физическими моделями и в кораблестроении.


1.2 Математические модели


Так называют модели, использующие для описания свойств и характеристик объекта или события математические символы и методы. Если некоторую проблему удается перенести на язык формул, то она сильно упрощается. Математический подход прост еще и потому, что он подчиняется вполне определенным жестким правилам, которые нельзя отменить указом или иным способом. Сложность нашей жизни как раз и состоит в том, что многое, что в ней случается, нередко свободно от условностей. Математика имеет дело с упрощенным описанием явлений. По существу, любая формула (или совокупность формул) представляет собой определенный этап в построении математической модели. Опыт показывает, что построить модель (написать уравнение) довольно легко. Трудно в этой модельной и следовательно, упрощенной форме суметь передать суть изучаемого явления.

Любой функциональный элемент реального объекта имеет свою структуру, его можно, как и весь объект, мысленно или физически разделить на взаимодействующие элементы. Элементарный динамический объект это рационально выбранный элемент реального объекта, условно считающийся неделимым, обладающий, как целое некоторым фундаментальным свойством, например инерцией, и с достаточной степенью точности описываемый простейшим алгебраическим или дифференциальным уравнением.

Важнейшее, фундаментальное свойство динамических объектов это их инерционность. Физически инерционность выражается в том, что объект не сразу, а постепенно реагирует на внешние воздействия, а в отсутствие внешнего воздействия стремится сохранить свое состояние и поведение. Математически инерция выражается в том, что выходная величина реального объекта является непрерывной во времени величиной. Более того, некоторые младшие производные выходной величины тоже должны быть непрерывными, они не могут изменяться скачком при ограниченных по мощности воздействиях, в том числе и изменяющихся скачком, ступенчато во времени.

Простейшие инерционные динамические объекты - кинедины. Это элементарные объекты, мысленно или физически вычленяемые из структуры сложного объекта и с достаточной степенью точности подчиняющиеся простейшим дифференциальным уравнениям различных порядков. Такие модели состоятельны, по крайней мере, в некоторой пространственно-временной области и в ограниченном диапазоне величин сигналов.

Математическое описание инерции динамического объекта, объекта, соответствующего некоторому дифференциальному уравнению, состоит в том, что воздействие сказывается на реакции объекта опосредовано, оно непосредственно влияет на ту или иную производную реакции по времени, или сразу на несколько из них. Это и приводит к тому, что реакция проявляется только с течением времени.

И действительно, такое описание соответствует поведению реальных объектов. Например, при мгновенной подаче некоторого, сравнительно малого, не меняющегося после подачи воздействия на элементарный объект второго порядка, например силы на инерционную массу, объект остается некоторое, пусть малое, время в том же состоянии, что и до подачи, имеет ту же скорость, что и ранее.

Но вторая производная, т.е. ускорение, прыгает скачком, пропорционально величине приложенной силы. И, поэтому, только с течением времени, а не сразу, наличие второй производной проявляется в изменении скорости, а следовательно, в последующем, и на положении тела в пространстве.


1.3 Аналоговые модели


Так называют модели, представляющие исследуемый объект аналогом, который ведет себя как реальный объект, но не выглядит как таковой.

Приведем два достаточно характерных примера.

Пример 1. График, иллюстрирующий соотношения между затраченными усилиями и результатами, является аналоговой моделью. График на рис. 1.1 показывает, как количество времени, отведенное студентом на подготовку к экзамену, влияет на его результат.


Рис. 1.1. График, иллюстрирующий соотношения между затраченными усилиями и результатами


Пример 2. Предположим, что нужно найти наиболее экономичный способ для регулярных известных поставок товаров в три города, построив для этого только один склад. Основное требование: место для склада должно быть таким, чтобы полные транспортные расходы были наименьшими (считается, что стоимость каждой перевозки равна произведению расстояния от склада до пункта назначения на общий вес перевозимых товаров и измеряется в тонна-километрах).

Наклеим карту местности на лист фанеры. Затем в месте нахождения каждого города пропилим сквозные отверстия, пропустим через них нити и привяжем к ним грузики, пропорциональные запросам товаров в этот город (рис. 1.2). Свяжем свободные концы нитей в один узел и отпустим. Под действием силы тяжести система придет в состояние равновесия. То место на листе фанеры, которое при этом займет узел, и будет соответствовать оптимальному расположению склада (рис. 1.3).

Замечание. Стоимость дорог, которые придется построить заново, мы для простоты рассуждений в расчет не принимаем.


Рис. 1.2. Карта местности на листе фанеры


Рис. 1.3. Оптимальное расположение склада


2. Построение математических моделей дискретных объектов


2.1 Модель народонаселения


Интересно, что построить математическую модель часто совсем нетрудно. Нередко для этого используются самые простые и легкообъяснимые предположения. Опишем, как это можно сделать, на одном почти реальном примере. Представим себе следующую картину. Середина XVIII в. центральная Европа, приход в глубинке, церковь, прихожане - жители окрестных деревень, приходский священник замечает, что храм стал тесноват для богослужений: возросло число прихожан. Священник размышляет: если число прихожан будет увеличиваться и в будущем, то придется строить новую церковь, для чего понадобятся средства, и немалые.

Священник понимает, что срок, за который должен быть построен храм, и его размеры во многом зависят от того, как имено будет изменяться число окрестных жителей. И он решает попытаться рассчитать это. Попробуем и мы изложить возможный ход его рассуждений, пользуясь современными обозначениями и языком.

Обозначим через х количество прихожан к концу n-го года. Их численность через год, т.е. к концу (n + 1)-го года, естественно обозначить через хn+1. Тогда изменение численности за этот год можно описать разностью

Оно происходит по двум естественным причинам - люди рождаются и умирают (для простоты будем считать, что вирус миграций эту местность тогда еще не поразил). Определить число родившихся и число умерших за год по приходским книгам особого труда не составляет. Подсчитывая число родившихся и умерших в разные годы, священник решает сопоставить полученные числа и d1,...,dk с общим числом прихожан за эти годы x1,..,xk, и замечает, что отношения x1,...,xk год от года различаются весьма мало. То же касается и отношений



Для простоты расчетов будем считать эти отношения постоянными и обозначим их через? и? соответственно. Тем самым число родившихся в n-м году оказывается равным, число умерших - ?xn, а изменение численности по естественным причинам составляет +?xn - ?xn.

В результате мы приходим к соотношению?xn=?хn - ?xn или подробнее:


xn+1=xn +?xn-?xn


Положим?=1 + ? - ?. Тогда интересующая нас формула примет вид



Модель построена.

Попробуем разобраться теперь с тем, что же получилось, т. е. проанализировать построенную модель. Возможны три случая:

1)?>1(?=?-?>0 - рождается больше, чем умирает) и численность прихожан растет год от года,

2)?=1 (?=?-?=0 - умирает столько же, сколько рождается) и численность прихожан год от года остается неизменной,

3)?<0 (?=?-?<0 - умирает больше, чем рождается) и численность прихожан неуклонно снижается.

Так как побудительным мотивом для построения модели было желание узнать, как быстро будет расти число прихожан, начнем с рассмотрения случая 1.

Случай 1. Итак, численность прихожан растет. Но как, насколько быстро? Здесь самое время кратко вспомнить поучительную историю (печальную притчу) о безвестном изобретателе шахмат. Говорят, что игра очень понравилась богатому и всесильному магарадже, который тут же решил наградить изобретателя и щедро предложил выбрать вознаграждение ему самому. Тот, как рассказывают, смахнув фигуры с шахматной доски, положил на 1-ю клетку одно пшеничное зернышко, на 2-ю - два зернышка, на 3-ю - четыре зернышка, на 4-ю - восемь зернышек (рис. 2.1) и предложил магарадже, чтобы он отдал распоряжение слугам выкладывать зерна пшеницы на другие клетки шахматной доски по предложенному закону, т. е. так: 1,2,4,8,16,…,263.


Рис. 2.1. Задача о шахматной доске и награде магараджи


Магараджу эта простая просьба почти обидела, и он согласилсявыполнить ее далеко не сразу. Но изобретатель настаивал. Магараджа приказал. И слуги тут же кинулись исполнять это "легкое"задание. Нужно ли говорить, что выполнить распоряжение магараджи им не удалось. Дело в том, что общее количество зерен пшеницына шахматной доске должно было быть равным 264 - 1, что намного превышает выращиваемое сейчас во всем мире за год. Закончим притчу совсем коротко: магараджа оказался в непривычном для себя положении - он прилюдно дал обещание и не смог его выполнить. Виновного, впрочем, тут же и нашли. Возможно, именно поэтому история и не сохранила имени изобретателя шахмат. Попробуем, однако, изобразить на графике, как быстро растет число зерен в каждой следующей клетке, для большей наглядности соединяя соседние точки (рис. 2.2).


Рис. 2.2-2.3. Экспоненциальное изменение численности


Правило, предложенное изобретателем шахмат, Xn+1=2xn является частным случаем формулы (1) при ?=2 и, так же как и она, описывает закон, следуя которому мы получаем последовательность чисел, образующих геометрическую прогрессию. При любом ?>1 картинка, иллюстрирующая изменение xn, имеет похожий вид - xn будет расти экспоненциально. В 1820 г. в Лондоне Т.Р. Мальтусом была опубликована работа "Principles of political economy considered with a view to their practical application" (в русском переводе - "Опыт о законе народонаселения..." Т. 1-2. СПб., 1868), в которой, в частности, говорилось о том, что в силу биологических особенностей людей население имеет тенденцию размножаться по закону геометрической прогрессии,


xn=1=?xn,?>1,


в то время как средства существования могут увеличиваться лишь по закону арифметической прогрессии, yn+1=yn+d, d>0. Такое различие в скорости изменения величин, непосредственно связанных с проблемами выживаемости популяции (рис. 2.3), не могло остаться незамеченным и вызвало довольно жесткую критику и сильно политизированную полемику в соответствующих кругах. Попробуем извлечь из самого факта критики полезный для нас вывод об адекватности построенной модели (1). Разумеется, при попытке упрощенного описания ситуации некоторыми обстоятельствами приходится пренебрегать, считая их несущественными. Однако единого взгляда на то, что именно существенно, а что не очень, по-видимому, нет. Можно, например, не обращать внимания на то, что начался дождик. Но согласитесь, что одно дело пробежать под накрапывающим дождем сотню метров, и совсем другое - часовая прогулка под таким дождем без зонта. Нечто аналогичное мы наблюдаем и здесь: при расчете на 3-4 года вперед формула (1) работает достаточно хорошо, но долгосрочный прогноз, основанный на ней, оказывается ошибочным.

Важный вывод. Предлагая построенную или выбранную вами модель, вы непременно должны указать пределы, в которых ею можно пользоваться, и предупредить о том, что нарушение этих ограничений может привести (и, скорее всего, приведет) к серьезным ошибкам. Коротко говоря, у каждой модели есть свой ресурс. Покупая блузку или рубашку, мы привыкли к наличию меток, на которых указаны максимально допустимая температура глажения, дозволенные виды стирки и т. п. Это, конечно, ни в коей мере не означает, что вам запрещается, взяв докрасна раскаленный утюг, пройтись им раз-другой по ткани. Такое вы сделать можете. Но вот захотите ли вы носить блузку или рубашку после такого глажения? Случай 2. Численность населения не изменяется (рис. 2.4). Случай 3. Население вымирает (рис. 2.5).


Рис. 2.4. График народонаселения при неизменяющейся численности


Рис. 2.5. График народонаселения при убывающей численности


Мы умышленно весьма подробно остановились на описании модели народонаселения, во-первых, потому, что она является одной из первых моделей подобного рода, и, во-вторых, чтобы на ее примере показать, через какие основные этапы проходит решение задачи построения математической модели.

Замечание 1. Очень часто, описывая эту модель народонаселения, привлекают ее дифференциальный вариант: x=?x (здесь х=x(t) - зависящая от времени численность популяции, х" - производная по времени, ?- постоянная величина).

Замечание 2. При больших значениях х конкурентная борьба за средства существования приводит к уменьшению ?, и эта жесткая модель должна быть заменена более мягкой моделью: x=?(x)x, в которой коэффициент ? зависит от численности населения. В простейшем случае эта зависимость описывается так:


?(x)=a-bx


где а и b - постоянные числа, а соответствующее уравнение принимает вид


x=ax-bx2


И мы приходим к более сложной, так называемой логистической модели, которая описывает динамику популяции уже достаточно хорошо. Анализ логистической кривой (рис. 2.6) весьма поучителен, и его проведение может быть любопытно читателю. Логистическая модель хорошо описывает и другие процессы, например эффективность рекламы.


Рис. 2.6. Логистическая кривая


2.2 Модель хищник - жертва


Выше рассказывалось о беспрепятственном размножении популяции. Однако в реальных обстоятельствах популяция сосуществует с другими популяциями, находясь с ними в самых разных взаимоотношениях. Здесь мы коротко рассмотрим антагонистическую пару хищник - жертва (это может быть и пара рысь - заяц и пара божья коровка - тля) и попытаемся проследить, как может изменяться со временем численность обеих взаимодействующих сторон. Популяция жертвы может существовать сама по себе, в то время как популяция хищника - только за счет жертвы. Обозначим численность популяции жертвы через х, а численность популяции хищника через у. В отсутствие хищника жертва размножается согласно уравнению x=ax, a>0, а хищник в отсутствие жертвы вымирает по закону y=-?y,?>0. Хищник съедает тем больше жертвы, чем ее больше и чем более многочислен он сам. Поэтому при наличии хищника численность жертвы меняется по закону


x=ax-?xy,?>0


Съеденное количество жертвы способствует размножению хищника, что можно записать так: y=-?y+?xy, ?>0.

Таким образом, мы получаем систему уравнений


x=ax-?xy

y=-?y+?xy


причем x?0, y?0.

Модель хищник - жертва построена.

Как и в предыдущей модели, наибольший интерес для нас представляет точка равновесия (х*,у*), где х* и у* - отличное от нуля решение системы уравнений


ax-?xy=0

Y+?xy=0


Или x(a-?y)=0, y(-?+?x)=0

Эта система получается из условия стабильности численности обеих популяций x=0, y=0

Координаты точки равновесия - она является точкой пересечения прямых


a-?y=0 (2)

?+?x=0 (3)


легко вычисляются:


, (рис. 2.7).


Рис. 2.7. Решение системы уравнений


Начало координат О(0,0) лежит в положительной полуплоскости относительно горизонтальной прямой, задаваемой уравнением (2), а относительно вертикальной прямой, задаваемой уравнением (3), в отрицательной полуплоскости (рис. 2.8). Тем самым первая четверть (а нас интересует только она, так как х>0 и у>0) разбивается на четыре области, которые удобно обозначить так: 1-(+,+), 2-(-,+), 3-(-,-), 4-(+,-).


Рис. 2.8. Разбиение области решений на квадранты

Пусть начальное состояние Q(x0,y0) находится в области IV. Тогда выполнены неравенства?-?y0>0, -?+?x0<0? из которых следует, что скорости x" и у" в этой точке должны быть разных знаков, x>0, y<0 и, значит, величина х должна возрастать, а величина убывать.

Подобным же образом анализируя поведение х и у в областях 2, 3 и 4, получим в итоге картину, изображенную на рис. 2.9.


Рис. 2.9. Изменение x и y по квадрантам


Тем самым начальное состояние Q приводит к периодическому колебанию численности, как жертвы, так и хищника, так что по прошествии какого-то времени система вновь возвращается в состояние Q (рис. 2.10).


Рис. 2.10. Цикличность колебаний численности хищника и жертвы


Как показывают наблюдения, несмотря на свою простоту, предложенная модель качественно верно отражает колебательный характер численности в системе хищник - жертва (рис. 2.11).


Рис. 2.11. Колебания систем Заяц - Рысь и Тля - Божья коровка


Реальные наблюдения. Вмешиваться в действия непонятных нам законов природы иногда довольно опасно - применение инсектицидов (если только они не уничтожают насекомых практически полностью) в конечном счете приводит к увеличению популяции тех насекомых, численность которых находится под контролем других насекомых-хищников. Случайно попавшая в Америку тля поставила под угрозу все производство цитрусовых. Вскоре туда же был завезен ее естественный враг - божья коровка, которая немедленно принялась за дело и сильно сократила популяцию тли. Чтобы ускорить процесс уничтожения, фермеры применили ДДТ, но в результате количество тли увеличилось, что, глядя на рис. 2.11, нетрудно предугадать.


2.3 Модель мобилизации


Под термином политическая, или социальная, мобилизация понимается вовлечение людей в партию или в число ее сторонников, в какое-либо общественное движение и т. п. Вследствие того что текущий уровень мобилизации тесно связан с прошлым ее уровнем, а будущая мобилизация зависит от сегодняшних успехов пропагандистской кампании, ясно, что при построении соответствующей модели необходимо учитывать временной фактор. Иными словами, нужно понимать, что искомая модель должна быть динамической.

Постановка задачи. Отразить логику изменения уровня мобилизации в данном регионе между двумя соседними моментами времени, скажем за месяц (за год, неделю, день и т. п.).

Построение модели. Примем за единицу ту часть населения, для которой мобилизация данного типа имеет смысл. Пусть Mn- доля мобилизованного населения в момент времени tn=n. Тогда доля немобилизованного населения будет равна 1-Mn (рис. 2.12).


Рис. 2.12. Соотношение мобилизованного и немобилизованного населения


За месяц уровень мобилизации может измениться по двум основным причинам:

) часть населения удалось привлечь дополнительно; ясно, что эта величина тем больше, чем выше доля еще несагитированного населения на момент tn=n, и поэтому можно считать ее равной ?(1-Мn), (здесь ?>0 - коэффициент агитируемости, постоянный для данного региона);

2) часть населения убыла (по разным причинам); ясно, что это уменьшает долю сагитированного населения тем больше, чем выше была эта доля на момент tn=n, и поэтому потери, связанные с выбытием, можно считать равными (здесь?>0 - постоянный коэффициент выбытия). Подчеркнем, что числовые параметры? и? отражают пропорциональное изменение интересов, взглядов и намерений соответствующих частей населения рассматриваемого региона. Таким образом, изменение уровня мобилизации за единицу времени равно разности между долей населения, привлеченного дополнительно, и долей выбывшего сагитированного населения:


Это и есть уравнение процесса мобилизации. Модель мобилизации построена.

Последнее соотношение легко преобразуется к следующему виду:



Замечание. Вспомогательный параметр? не может быть больше 1 вследствие того, что исходные параметры? и? положительны. Полученное уравнение (4) называется линейным разностным уравнением с постоянными коэффициентами.

С уравнениями подобного рода можно сталкиваться в разных, по большей части простейших вариантах.

Один из них (при?=1) описывает правило, по которому каждый член последовательности, начиная со второго, получается из предыдущего путем сложения с некоторым постоянным числом: Mn+1=?+Mn, т. е. арифметрическую прогрессию.

Второй (при?=0) описывает правило, по которому каждый член последовательности, начиная со второго, получается из предыдущего путем умножения на некоторое постоянное число: Mn+1=?Mn, т. е. геометрическую прогрессию.

Предположим, что начальная доля привлеченного населения М0 известна. Тогда уравнение (4) легко решается (для определенности считаем, что). Имеем:

Применение модели.

Попробуем проанализировать возможности этой (построенной на основании простейших соображений) модели.

Начнем со случая |?|<1.

Для этого перепишем последнее соотношение в виде, где через M* обозначена следующая величина:



Замечание. Тот же результат получается, если в уравнении (4) положить Mn+1=Mn=M*.

В самом деле, тогда получим M*=?+?M*, откуда



Найденная величина M* не зависит от начального значения M0, выражается через исходные параметры? и? по формуле



а следовательно подчиняется условию 0

Для придания полученной формуле большей наглядности вновь воспользуемся методом координат.

На рис. 2.13 показаны области возможных значений вспомогательного параметра?, на рис. 2.14 - исходных параметров? и?, а на рис. 2.15-17 - соответствующие им наборы значений Мn при разных n, М0 и М* (для удобства восприятия соседние точки (n,Мn) и (n+l,Mn+1) соединены прямолинейными отрезками).

Случай?<1 проиллюстрирован на рис. 2.18.

Конечно, на этих рисунках представлена качественная картина. Но ничто не мешает взять вполне конкретные значения величин М0, ? и? и подробно рассчитать соответствующую ситуацию.


Рис. 2.13.области возможных значений? 2.14.исходные параметры? и?


Рис. 2.15 - 2.16


Рис. 2.17 2.18. Случай?<1


Например, для, имеем

,…(рис. 2.19)

Рис. 2.19. Мобилизация при,


Интересно отметить, что построенная модель, несмотря на простоту подходов и рассуждений, довольно хорошо отражает реальные процессы. Так, предложенная модель мобилизации использовалась для изучения динамики числа голосов, поданных за демократическую партию в Лейк Кантри (США) в 1920-1968 гг., и оказалось, что она достаточно хорошо описывает качественные характеристики процесса мобилизации.


2.4 Модель гонки вооружений


Рассмотрим конфликтную ситуацию, в которой могут оказаться две страны, для определенности назовём страны X и Y.

Обозначим через x=x(t) расходы на вооружение страны X и через y=y(t) расходы на вооружение страны Y в момент времени.

Предположение 1. Страна X вооружается, опасаясь потенциальной угрозы войны со стороны страны Y, которая в свою очередь, зная о росте затрат на вооружение страны X, также увеличивает свои расходы на вооружение. Каждая страна изменяет скорость роста (или сокращения) вооружений пропорционально уровню затрат другой. В простейшем случае это можно описать так:



где ? и ?- положительные постоянные.

Однако написанные уравнения имеют очевидный недостаток - уровень вооружения ничем не лимитируется. Поэтому правые части этих уравнений нуждаются в естественной корректировке.

Предположение 2.

Чем больше текущий уровень расходов страны на оборону, тем меньше скорость его роста. Это позволяет внести в предыдущую систему следующие изменения:


x=?y-?x

y=?x-?y


если же эта страна не угрожает существованию данной. Обозначим соответствующие претензии через a и b (а и b - положительные постоянные). В случае если постоянные a и b отрицательны, их можно назвать коэффициентами доброй воли. Основываясь на всех трех предположениях, в результате получаем следующую систему уравнений:


x=?y-?x+a

y=?x-?y+b


Модель гонки вооружений построена.

Решением полученной системы являются функции x(t) и y(t), определяемые для данных начальных условий x0?0 и y0?0 (начального состояния гонки вооружений).

Проанализируем полученную систему, предполагая, что уровни затрат обеих стран на вооружение не зависят от времени (являются стационарными). Это означает, что x=0, y=0, или по иному:


Y-?x+a=0

X-?y+b=0


Рассмотрим конкретный пример.

Пример. Пусть система гонки вооружений имеет следующий вид:


x=3y-5x+15

y=3x-4y+12


Если скорости изменения величин x и y равны нулю, то эти величины с необходимостью связаны условиями:



Каждое из этих уравнений описывает прямую на плоскости (x,y), и точка пересечения этих прямых лежит в первой четверти (рис. 2.20)


Прямая, заданная уравнением (а), разбивает плоскость, и начальная точка O(0,0) лежит в положительной полуплоскости. В рассматриваемом случае то же справедливо и для прямой, заданной уравнением (б) (рис. 2.21).

Тем самым первая четверть (а нас интересует только она, так как всегда х?0 и у?0) разбивается на четыре области, которые удобно обозначить так: I-(+,+), II-(-,+), III-(-,-), IV-(+,-).

Пусть начальное состояние (х00) находится в области I. Тогда выполнены неравенства:


(а): 3у0-5x0+15>0,

(б): 3х0-0+12>0,


из которых следует, что скорости x" и у" в этой точке положительны: х">0, у">0 и, значит, обе величины (х и у) должны возрастать (рис. 2.22).


Рис. 2.22. возрастание x и y


Таким образом, с течением времени в области I решение приходит в точку равновесия.

Подобным же образом анализируя возможные расположения начального состояния в областях II, III и IV, получим в итоге, что стабильное состояние (баланса сил) достигается независимо от начальных уровней вооружения стран X и Y. Отличие состоит лишь в том, что если переход к стационарному состоянию из области I сопровождается одновременным увеличением уровней вооруженности, то из области III - их одновременным снижением; для областей II и IV иная ситуация - одна из сторон наращивает свое вооружение, в то время как другая разоружается.

Возможны и другие случаи (рис. 2.23).


Рис. 2.23. другие случаи


Интересно отметить, что возможности построенной модели проверялись на реальной ситуации - гонке вооружений перед первой мировой войной. Проведенные исследования показали, что, несмотря на свою простоту, эта модель достаточно достоверно описывает положение дел в Европе в 1909-1913 гг.

В завершение этого раздела процитируем высказывание Т. Саати об этой модели: "Модель представляется гораздо более убедительной, если вместо вооружений провести на ней изучение проблем угрозы, поскольку люди реагируют на абсолютный уровень враждебности, проявляемый по отношению к ним другими, и испытывают чувство тревоги в степени, пропорциональной уровню враждебности, которую они испытывают сами".


Заключение


В наше время наука уделяет все большое внимание вопросам организации и управления, это приводит к необходимости анализа сложных целенаправленных процессов под углом зрения их структуры и организации. Потребности практики вызвали к жизни специальные методы, которые удобно объединять под названием «исследование операций». Под этим термином понимается применение математических, количественных методов для обоснования решений во всех областях целенаправленной человеческой деятельности.

Целью исследования операций является выявление наилучшего способа действия при решение той или иной задачи. Главная роль при этом отводится математическому моделированию. Для построения математической модели необходимо иметь строгое представление о цели функционирования исследуемой системы и располагать информацией об ограничениях, которые определяют область допустимых значений. Цель и ограничения должны быть представлены в виде функций.

В моделях исследования операций переменные, от которых зависят ограничения и целевая функция, могут быть дискретными (чаще всего целочисленными) и континуальными (непрерывными). В свою очередь, ограничения и целевая функция делятся на линейные и нелинейные. Существуют различные методы решения данных моделей, наиболее известными и эффективными из них являются методы линейного программирования, когда целевая функция и все ограничения линейные. Для решения математических моделей других типов предназначены методы динамического программирования (которые были рассмотрены в данном курсовом проекте), целочисленного программирования, нелинейного программирования, многокритериальной оптимизации и методы сетевых моделей. Практически все методы исследования операций порождают вычислительные алгоритмы, которые являются итерационными по своей природе. Это подразумевает, что задача решается последовательно (итерационно), когда на каждом шаге (итерации) получаем решение, постепенно сходящиеся к оптимальному решению.

Итерационная природа алгоритмов обычно приводит к объемным однотипным вычислениям. В этом и заключается причина того, что эти алгоритмы разрабатываются, в основном, для реализации с помощью вычислительной техники.

Построение модели опирается на значительное упрощение изучаемой ситуации и, следовательно, к получаемым на ее основе выводам нужно относиться достаточно осторожно - модель может не все. Вместе с тем даже весьма грубая на вид идеализация нередко позволяет глубже вникнуть в суть проблемы. Пробуя как-то влиять на параметры модели (выбирать их, управлять ими), мы получаем возможность подвергнуть исследуемое явление качественному анализу и сделать выводы общего характера.

Динамическое программирование представляет собой математический аппарат, позволяющий осуществлять оптимальное планирование многошаговых процессов, зависящих от времени. Так как в задачах динамического программирования процессы зависят от времени, то находится ряд оптимальных решений для каждого этапа, обеспечивающих оптимальное развитие всего процесса в целом.

Используя поэтапное планирование, динамическое программирование позволяет не только упростить решение задач, но и решать те к которым нельзя применить методы математического анализа. Конечно, стоит отметить, что этот метод достаточно трудоёмкий при решении задач с большом количеством переменных.


Список используемой литературы


1.Акулич И.Л. Математическое программирование в примерах и задачах: Учеб. пособ. - М.: Высшая школа, 2009 г.

.Бережная Е.В., Бережной В.И. Математические методы моделирования. - М.: Дело и Сервис, 2009 г

.Интрилигатор М. Математические методы оптимизации и экономическая теория. - М.: Айрис-Пресс, 2008 г.

.Курбатов В.И., Угольницкий Г.А. Математические методы социальных технологий. - М.: Вузовская книга, 2011 г.

.Монахов А.В. Математические методы анализа экономики. - СПб.: Питер, 2007 г.

.Орлова И.В., Половников В.А. Экономико-Математические методы и модели. - М.: Вузовский учебник, 2008 г.

.Попов И.И., Партыка Т.Л. Математические методы. - М.: ИНФРА-М, 2007 г.

.Попова Н.В. Математические методы. - М.: Анкил, 2007 г.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Существует модель, которая связывает и согласовывает между собой два, на первый взгляд далекие друг от друга описания человека – психофизическое и Трансперсональное. Модель эта имеет многовековую историю и опирается на глубокий исследовательский и практический опыт, передающийся непосредственно от Учителя к Ученику. На языке Традиции, представителями которой являются авторы данной книги, модель эта носит название Объемно – Пространственная Модель, (которая неоднократно упоминалась уже в первых главах). Имеются некоторые параллели Объемно – Пространственной Модели с другими древними описаниями человека (системой Чакр – “тонких” тел; “энергетических центров” – “планов сознания” и др.). К сожалению, серьезное исследование этих моделей сейчас, в большинстве случаев, подменено распространенным вульгарным представлением о Чакрах, как о неких пространственно – локализованных образованиях, а о “тонких” телах, как о своеобразной “матрешке”, состоящей из каких-то невидимых невооруженным глазом сущностей. Авторам известно лишь сравнительно небольшое число современных трезвых исследований этого вопроса [см., например, Йог №20 “Вопросы Общей теории Чакр” СПб 1994.]

Сложившаяся ситуация крайне невыгодна: критически мыслящие специалисты настроены к модели Чакр и “тонких” тел скептически, прочие же (иногда несмотря даже на длительный опыт работы психологом или психотерапевтом) становятся в один ряд с домохозяйками (не в обиду им сказано), посещающими курсы “экстрасенсорики”, и пополняют армию носителей легенд о Чакрах и “Телах”, распространяемых популярными брошюрами. Дело доходит иногда до комического оборота. Так, одному из авторов данной книги довелось несколько лет назад присутствовать на психологическом тренинге, с элементами “эзотерики”, где весьма авторитетный ведущий давал примерно такую инструкцию к одному из упражнений: “... А теперь, вы своей эфирной рукой поставьте “якорь” прямо клиенту в нижнюю Чакру...”, что большинство присутствующих сразу с энтузиазмом попытались осуществить (конечно, не далее, чем в своем воображении).



Далее мы не будем упоминать Чакры и Тела, а будем пользоваться языком Объемов и Пространств. Не следует, однако, проводить однозначное соответствие между Объемами и Чакрами, Пространствами и Телами; несмотря на некоторое сходство, модели эти отличаются; отличия, в свою очередь, связаны не с претензией на большую или меньшую правильность, а с удобством для той Практики, которую мы представляем на страницах данной книги.

Вернемся еще раз к определениям Объемов и Пространств, которые мы давали в главах 1 и 2:

Итак, Объемы – это не части физического тела и не некие локализованные области. Каждый Объем – Целостное психофизическое состояние, образование, отражающее некоторую (конгруэнтную) совокупность определенных качеств организма, как целого. Если говорить на энергетическом языке, то Объем – определенный диапазон энергии, который, при фокусировке восприятия на физическом мире, проявляется в сочетании тканей, органов, участков нервной системы и т.д. В довольно упрощенном варианте можно для каждого Объема найти наиболее характерную функцию и задачу, которую он выполняет в организме. . Так, функции Копчикового Объема можно связать с задачей выживания во всех его формах (физического, социального, духовного), проявления, рождения, становления... Функции Мочеполового Объема ассоциируются с процветанием, изобилием, плодородием, развитием и преумножением, многообразием и достатком... Для Пупочного Объема основные задачи (читай – диапазон энергии) – упорядочивание, структурирование, управление и связывание. И так далее. Нас будут пока интересовать не конкретные функции Объемов. а общие механизмы работы с ними.

Каждое переживание, любой опыт воспринимается нами преимущественно через тот или иной Объем. Это относится к любому опыту – если мы хотим активизировать то или иное переживание, то возбуждается тот или иной Объем и мы начинаем воспринимать Мир “через него”. Применительно к психотерапевтической работе – когда терапевт обращается к какому-то переживанию клиента: “проблемному” или “ресурсному”, пытается работать с некой “частью личности”, он, тем самым, фокусирует сознание пациента в какой-то области того или иного Объема (кстати, мы кратко упомянули функции только трех нижних Объемов потому, что реальная продуктивная фокусировка внимания в верхних Объемах – явление незаурядное – тут не все так просто, как описано в книжках). То же относится и к Пространствам. Напомним, что Пространства – схемы восприятия, отражающие уровни “тонкости” восприятия. Один и тот же Объем на разных уровнях восприятия будет проявляться по-своему, сохраняя свои основные задачи. Так, например, Пупочный Объем в Пространстве Событий проявляется через ряд ситуаций, в которых человек что-то с чем-то связывает, упорядочивает, управляет и т.п., в Пространстве Имен – тот же Объем проявится через схематизацию. моделирование, приведение в порядок мыслей и взглядов на Мир, построение планов и т.д., в Пространстве Отражений весь эмоциональный спектр тоже будет окрашен соответствующими этому Объему задачами.

Объемно-Пространственную Модель организма человека можно условно представить в виде схемы (Рис.3.)

Рис.3. Объемно-Пространственная Модель.

На схеме (Рис.3.) наглядно видно, что каждое Пространство охватывает весь спектр энергии на определенном уровне “тонкости”, где каждый Объем – это “сектор”, выделяющий определенный энергетический диапазон.

Итак – Объемно-Пространственная Модель позволяет в Человеке и в Мире, которые воспринимаются, как динамические энергетические структуры, выделить различные качества энергии. В восприятии эти качества энергии проявляются через определенное сочетание самых разнообразных факторов:

физиологических процессов (механических, тепловых, химических, электродинамических), динамике нервных импульсов, активизации тех или иных модальностей, окраске эмоций и мышления, сочетании событий, переплетении судеб; попадании в соответствующие “внешние” условия: географические, климатические, социальные, политические, исторические, культурные...

Энергопотоки.

Схема, приведенная на Рис.3. дает нам энергетическую модель организма человека. С этой точки зрения, всю жизнь человека, как проявление, оформление этой энергии или как динамику само-восприятия, можно представить в виде движения-пульсации некого “узора” на схеме, где в каждый момент времени активизируются те или иные области энергетического спектра (Рис.4.).

Однако динамика само-восприятия и движения энергии не так уж произвольны и многообразны для обычного человека. Существуют области, в которых восприятие, так сказать, зафиксировано и довольно устойчиво, некоторые области спектра доступны только изредка и при особом стечении обстоятельств. Существуют области, практически недоступные для осознания в течении всей жизни (для каждого человека разные: для одного человека недоступно переживание смысла, другой за всю жизнь так и не пережил по-настоящему свое тело, третий не в состоянии пережить определенное качество эмоций, событий, мыслей и т.п.).

Наиболее вероятная траектория движения и фиксаций восприятия и осознания определяется Доминантой. Становится понятно, что для того, чтобы оторваться от этой наиболее вероятной траектории и устойчивых позиций восприятия, нужна некая добавочная энергия и, что самое важное, умение направить эту энергию в нужном направлении, так, чтобы она не попала в наработанное стереотипное русло.

t’
t”
t”’

Рис.4. Динамика восприятия во времени.

Этим и объясняется наличие труднодоступных и недоступных для восприятия и осознания диапазонов – обычно у человека нет этой добавочной энергии; лишь иногда она может высвободиться в результате каких-либо чрезвычайных, чаще всего стрессовых, обстоятельств, что позволит восприятию сместиться в ранее недоступный диапазон (такое внезапное смещение восприятия может привести к появлению у человека каких-то новых способностей, недоступных в обычном состоянии).

Если мы вернемся к понятию Целостность, то теперь можно рассмотреть его еще с одной стороны: Реализация Целостности – это реализация Индивидуальной Сферы, т.е. ситуация, когда восприятие может свободно перемещаться, охватывая все диапазоны энергии, не имея жестко фиксированных позиций и однозначно заданных траекторий.

Для более детального описания этой ситуации нам потребуется обратиться к понятию Энергопотока. Энергопоток – движение, развитие точечного импульса восприятия в Объемно-Пространственной энергосистеме. Можно сказать еще и так: Энергопоток – динамическое соединение различных областей в Индивидуальной Сфере по общему энергодиапазону (например по одной модальности).

“Находясь в непрерывном диалоге с Миром, человек (И.С.) откликается практически на все сигналы, приходящие “извне” движением Энергопотоков. Причем чувствительность И.С. значительно выше порога восприятия органов чувств. Соответственно существует множество неосознанных реакций.

Особенности личной деформации И.С. создают постоянные характерные индивидуальные Энергопотоки. То, что мы осознаем, как ощущения, эмоции, мысли, движения тела и превратности судьбы, память, проекции будущего, болезни, особенности культуры и мировоззрения – все это (и многое другое) движение Энергопотоков.”

Можно условно выделить конструктивные и деструктивные Энергопотоки. Конструктивный Э. – динамика восприятия, способствующая устранению деформаций из И.С. – жестких, доминирующих структур. Деструктивный Э. – динамика восприятия, способствующая возникновению новых или подкреплению имеющихся деформаций И.С.

В свою очередь, динамикой Энергопотоков мы будем называть многофакторный динамический процесс, переводящий восприятие человека из одного состояния в другое (пример динамики Энергопотоков изображен на Рис.5.).

В Целостном организме возможны любые Энергопотоки, для которых он (организм) абсолютно прозрачен и проницаем. Динамика Энергопотоков может, в таких случаях, переводить восприятие в любое положение. (Это эквивалентно тому, что мы назвали сквозным Осознанием в Главе 1.).

Динамика Энергопотоков – процесс многофакторный, т.к. любое состояние проявляется в виде сочетания большого числа факторов (например, определенных ощущений, характера движений. мимики, параметров голоса, тех или иных эмоций и т.п.). Динамика Энергопотоков переводит одно состояние в другое (точнее сказать – это процесс – непрерывная смена состояний) и, соответственно, могут меняться какие-то факторы и параметры, через которые Энергопотоки проявляются.

Рис.5. Пример динамики Энергопотоков, переводящей восприятие из состояния с жестко локализованной структурой (А)в более Целостное (Д), в пределах одного Пространства

Если теперь обратиться к психотерапии, то мы обнаружим следующее:

Пациент находится в некотором состоянии восприятия (определяемом его Доминантой), которое, очевидно, не Целостно, в его энергетике имеются жестко локализованные структуры, что не дает возможности сдвигать восприятие в другие положения. Для выхода из такой ситуации необходимо задать Энергопотоки, позволяющие сместиться в другое состояние, которое пациент будет воспринимать, как более позитивное. На этом психотерапия, обычно, заканчивается.

Если посмотреть с более общих позиций, то окажется, что не‑пациент или вылечившийся пациент по большому счету мало чем отличается от “больного”. Отличие только в том, что “больной” воспринимает свое состояние, как дискомфортное, а “здоровый”– как более – менеекомфортное и, может быть, имеющее больше степеней свободы. Однако, к Целостности это не имеет никакого отношения, т.к. и состояние “больного” и “здорового” это, как правило, все равно ограниченные, локализованные и задаваемые Доминантой фиксации восприятия.

Целостность подразумевает возможность самостоятель­ного задания любых Энергопотоков и переживания Мира то­тально, одномоментно всем организмом.